Siegrist Sarah E, Doe Chris Q
Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, 97403, USA.
Development. 2006 Feb;133(3):529-36. doi: 10.1242/dev.02211. Epub 2006 Jan 5.
Cell polarity must be integrated with tissue polarity for proper development. The Drosophila embryonic central nervous system (CNS) is a highly polarized tissue; neuroblasts occupy the most apical layer of cells within the CNS, and lie just basal to the neural epithelium. Neuroblasts are the CNS progenitor cells and undergo multiple rounds of asymmetric cell division, ;budding off' smaller daughter cells (GMCs) from the side opposite the epithelium, thereby positioning neuronal/glial progeny towards the embryo interior. It is unknown whether this highly stereotypical orientation of neuroblast divisions is controlled by an intrinsic cue (e.g. cortical mark) or an extrinsic cue (e.g. cell-cell signal). Using live imaging and in vitro culture, we find that neuroblasts in contact with epithelial cells always ;bud off' GMCs in the same direction, opposite from the epithelia-neuroblast contact site, identical to what is observed in vivo. By contrast, isolated neuroblasts 'bud off' GMCs at random positions. Imaging of centrosome/spindle dynamics and cortical polarity shows that in neuroblasts contacting epithelial cells, centrosomes remained anchored and cortical polarity proteins localize at the same epithelia-neuroblast contact site over subsequent cell cycles. In isolated neuroblasts, centrosomes drifted between cell cycles and cortical polarity proteins showed a delay in polarization and random positioning. We conclude that embryonic neuroblasts require an extrinsic signal from the overlying epithelium to anchor the centrosome/centrosome pair at the site of epithelial-neuroblast contact and for proper temporal and spatial localization of cortical Par proteins. This ensures the proper coordination between neuroblast cell polarity and CNS tissue polarity.
细胞极性必须与组织极性整合以实现正常发育。果蝇胚胎中枢神经系统(CNS)是一种高度极化的组织;神经母细胞占据CNS内最顶端的细胞层,位于神经上皮的基底侧。神经母细胞是CNS祖细胞,经历多轮不对称细胞分裂,从与上皮相对的一侧“出芽”产生较小的子细胞(神经节母细胞),从而将神经元/胶质细胞后代定位在胚胎内部。尚不清楚神经母细胞分裂这种高度刻板的取向是由内在线索(如皮质标记)还是外在线索(如细胞间信号)控制。通过实时成像和体外培养,我们发现与上皮细胞接触的神经母细胞总是朝着与上皮-神经母细胞接触位点相反的同一方向“出芽”产生神经节母细胞,这与体内观察到的情况相同。相比之下,分离的神经母细胞在随机位置“出芽”产生神经节母细胞。中心体/纺锤体动力学和皮质极性成像显示,在与上皮细胞接触的神经母细胞中,中心体在随后的细胞周期中保持锚定,皮质极性蛋白定位于同一上皮-神经母细胞接触位点。在分离的神经母细胞中,中心体在细胞周期之间漂移,皮质极性蛋白显示出极化延迟和随机定位。我们得出结论,胚胎神经母细胞需要来自上层上皮的外在信号,以将中心体/中心体对锚定在上皮-神经母细胞接触位点,并实现皮质Par蛋白的正确时空定位。这确保了神经母细胞极性与CNS组织极性之间的正确协调。