Yendiki Anastasia, Fessler Jeffrey A
University of Michigan, Ann Arbor, MI 48109-2122, USA.
IEEE Trans Med Imaging. 2006 Jan;25(1):28-41. doi: 10.1109/TMI.2005.859714.
We consider the task of detecting a statistically varying signal of known location on a statistically varying background in a reconstructed tomographic image. We analyze the performance of linear observer models in this task. We show that, if one chooses a suitable reconstruction method, a broad family of linear observers can exactly achieve the optimal detection performance attainable with any combination of a linear observer and linear reconstructor. This conclusion encompasses several well-known observer models from the literature, including models with a frequency-selective channel mechanism and certain types of internal noise. Interestingly, the "optimal" reconstruction methods are unregularized and in some cases quite unconventional. These results suggest that, for the purposes of designing regularized reconstruction methods that optimize lesion detectability, known-location tasks are of limited use.
我们考虑在重建的断层图像中,检测统计变化背景上已知位置的统计变化信号这一任务。我们分析了线性观测器模型在该任务中的性能。我们表明,如果选择合适的重建方法,一大类线性观测器能够精确实现线性观测器和线性重建器的任何组合所能达到的最优检测性能。这一结论涵盖了文献中的几种知名观测器模型,包括具有频率选择通道机制的模型和某些类型的内部噪声模型。有趣的是,“最优”重建方法是无正则化的,在某些情况下相当非常规。这些结果表明,为了设计优化病变可检测性的正则化重建方法,已知位置任务的用途有限。