Suppr超能文献

一种源自决策理论的最优三类线性观测器。

An optimal three-class linear observer derived from decision theory.

作者信息

He Xin, Frey Eric C

机构信息

Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.

出版信息

IEEE Trans Med Imaging. 2007 Jan;26(1):77-83. doi: 10.1109/TMI.2006.885335.

Abstract

Many attempts have been made to develop an optimal linear observer for classifying multiclass data. Most approaches either do not have a definite description of optimality or have regions of ambiguity in decision making. In this paper, we derive a three-class Hotelling observer (3-HO), inspired by the ideal observer that results from a decision theoretic solution to the three-class classification problem. Assuming the data vectors follow multivariate Gaussian distributions with equal covariance matrices for the three classes, it is shown that two two-class Hotelling templates construct a 3-HO which has the same performance as the three-class ideal observer (3-IO). We show that, without the Gaussian and equal covariance assumptions, the 3-HO is still applicable when the two-class Hotelling templates of each pair of the classes satisfy a certain linear relationship. In this case, the 3-HO simultaneously maximizes the signal-to-noise (SNR) of the test statistics between each pair of the classes. In conclusion, we developed a three-class linear mathematical observer that uses first- and second-order ensemble data statistics. This mathematical observer, which has clearly defined optimality for several data statistics conditions and has decision rules that have no ambiguous decision regions, is potentially useful in the optimization and evaluation of imaging techniques for performing three-class diagnostic tasks.

摘要

为了对多类数据进行分类,人们进行了许多尝试来开发一种最优线性观测器。大多数方法要么没有对最优性进行明确描述,要么在决策中存在模糊区域。在本文中,我们受理想观测器的启发,推导出了一种三类霍特林观测器(3-HO),该理想观测器是通过对三类分类问题的决策理论解决方案得出的。假设数据向量遵循具有相等协方差矩阵的多变量高斯分布,结果表明两个两类霍特林模板构建了一个3-HO,其性能与三类理想观测器(3-IO)相同。我们表明,在没有高斯和相等协方差假设的情况下,当每对类别的两类霍特林模板满足一定的线性关系时,3-HO仍然适用。在这种情况下,3-HO同时最大化每对类别之间测试统计量的信噪比(SNR)。总之,我们开发了一种使用一阶和二阶总体数据统计量的三类线性数学观测器。这种数学观测器在几种数据统计条件下具有明确界定的最优性,并且具有没有模糊决策区域的决策规则,在执行三类诊断任务的成像技术的优化和评估中可能很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验