Watanabe Mitsuhiro, Houten Sander M, Mataki Chikage, Christoffolete Marcelo A, Kim Brian W, Sato Hiroyuki, Messaddeq Nadia, Harney John W, Ezaki Osamu, Kodama Tatsuhiko, Schoonjans Kristina, Bianco Antonio C, Auwerx Johan
Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch, France.
Nature. 2006 Jan 26;439(7075):484-9. doi: 10.1038/nature04330. Epub 2006 Jan 8.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.
虽然长期以来人们都知道胆汁酸(BAs)在膳食脂质吸收和胆固醇分解代谢中至关重要,但近年来,胆汁酸作为信号分子的重要作用已逐渐显现。胆汁酸可激活丝裂原活化蛋白激酶途径,是G蛋白偶联受体(GPCR)TGR5的配体,并能激活核激素受体,如法尼醇X受体α(FXR-α;NR1H4)。FXR-α通过控制诸如短异源二聚体伴侣(SHP;NR0B2)等基因的表达来调节胆汁酸的肠肝循环和生物合成,SHP可抑制其他核受体的活性。FXR-α介导的SHP诱导也是固醇调节元件结合蛋白1c介导的肝脏脂肪酸和甘油三酯生物合成以及极低密度脂蛋白生成下调的基础。这表明胆汁酸可能不仅能控制胆汁酸稳态,还能作为一般代谢整合剂发挥作用。在此,我们表明给小鼠施用胆汁酸可增加棕色脂肪组织的能量消耗,预防肥胖和胰岛素抵抗。胆汁酸这种新的代谢作用关键依赖于环磷酸腺苷依赖性甲状腺激素激活酶2型碘甲状腺原氨酸脱碘酶(D2)的诱导,因为在D2基因敲除小鼠中这种作用会消失。用胆汁酸处理棕色脂肪细胞和人类骨骼肌细胞可增加D2活性和氧气消耗。这些作用不依赖于FXR-α,而是由胆汁酸与G蛋白偶联受体TGR5结合导致的环磷酸腺苷生成增加所介导。在啮齿动物和人类中,这种机制特异性地作用于产热最重要的组织,因为它们共表达D2和TGR5。因此,胆汁酸-TGR5-环磷酸腺苷-D2信号通路是微调能量稳态的关键机制,可作为改善代谢控制的靶点。