Pan Zhiying, Lin D Y
Department of Biostatistics, University of North Carolina, CB 7420, McGavran-Greenberg Hall, Chapel Hill, 27599-7420, USA.
Biometrics. 2005 Dec;61(4):1000-9. doi: 10.1111/j.1541-0420.2005.00365.x.
We develop graphical and numerical methods for checking the adequacy of generalized linear mixed models (GLMMs). These methods are based on the cumulative sums of residuals over covariates or predicted values of the response variable. Under the assumed model, the asymptotic distributions of these stochastic processes can be approximated by certain zero-mean Gaussian processes, whose realizations can be generated through Monte Carlo simulation. Each observed process can then be compared, both visually and analytically, to a number of realizations simulated from the null distribution. These comparisons enable one to assess objectively whether the observed residual patterns reflect model misspecification or random variation. The proposed methods are particularly useful for checking the functional form of a covariate or the link function. Extensive simulation studies show that the proposed goodness-of-fit tests have proper sizes and are sensitive to model misspecification. Applications to two medical studies lead to improved models.
我们开发了用于检验广义线性混合模型(GLMMs)适用性的图形和数值方法。这些方法基于响应变量的协变量或预测值上的残差累积和。在假定模型下,这些随机过程的渐近分布可以由某些零均值高斯过程近似,其实现可以通过蒙特卡罗模拟生成。然后,每个观察到的过程可以在视觉和分析上与从零分布模拟的多个实现进行比较。这些比较使人们能够客观地评估观察到的残差模式是否反映了模型误设或随机变化。所提出的方法对于检验协变量的函数形式或连接函数特别有用。广泛的模拟研究表明,所提出的拟合优度检验具有合适的规模,并且对模型误设敏感。应用于两项医学研究导致了改进的模型。