Faddy M J, Smith D M
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
Biometrics. 2005 Dec;61(4):1112-4. doi: 10.1111/j.1541-0420.2005.00466.x.
A model for binary trials based on a bivariate generalization of the Poisson process for both the number of successes and number of trials with the transition rates dependent on the accumulating numbers of successes and trials is used to reanalyze some recently published data of Zhu, Eickhoff, and Kaiser (2003, Biometrics59, 955-961). This modeling admits alternative distributions for the numbers of trials and the numbers of successes conditional on the number of trials which generalize the Poisson and binomial distributions, without some of the restrictions apparent in the beta-binomial-Poisson mixed modeling of Zhu et al. (2003). Some quite marked differences between the results of this analysis and those described in Zhu et al. (2003) are apparent.
基于泊松过程双变量推广的二元试验模型,用于成功次数和试验次数,其转移率取决于成功次数和试验次数的累积数量,该模型用于重新分析朱、艾克霍夫和凯泽(2003年,《生物统计学》59卷,955 - 961页)最近发表的一些数据。这种建模允许试验次数和给定试验次数下成功次数的替代分布,这些分布推广了泊松分布和二项分布,没有朱等人(2003年)的贝塔 - 二项式 - 泊松混合建模中明显的一些限制。该分析结果与朱等人(2003年)所描述的结果之间存在一些相当显著的差异。