Ferrario Manuela, Signorini Maria G, Magenes Giovanni, Cerutti Sergio
Dipartimento di Bioingegneria, University Politecnico di Milano, Italy.
IEEE Trans Biomed Eng. 2006 Jan;53(1):119-25. doi: 10.1109/TBME.2005.859809.
This paper considers the multiscale entropy (MSE) approach for estimating the regularity of time series at different scales. Sample entropy (SampEn) and approximate entropy (ApEn) are evaluated in MSE analysis on simulated data to enhance the main features of both estimators. We applied the approximate entropy and the sample entropy estimators to fetal heart rate signals on both single and multiple scales for an early identification of fetal sufferance antepartum. Our results show that the ApEn index significantly distinguishes suffering from normal fetuses between the 30th and the 35th week of gestation. Furthermore, our data shows that the MSE entropy values are reliable indicators of the fetal distress associated with the presence of a pathological condition at birth.
本文考虑了用于估计不同尺度时间序列规律性的多尺度熵(MSE)方法。在对模拟数据的MSE分析中评估了样本熵(SampEn)和近似熵(ApEn),以增强这两种估计器的主要特征。我们将近似熵和样本熵估计器应用于单尺度和多尺度的胎儿心率信号,以早期识别产前胎儿窘迫。我们的结果表明,ApEn指数在妊娠第30周和第35周之间能显著区分患病胎儿和正常胎儿。此外,我们的数据表明,MSE熵值是与出生时存在病理状况相关的胎儿窘迫的可靠指标。