Suppr超能文献

胎儿心率信号处理与分析技术的综合评述

A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals.

机构信息

Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.

Department of Experimental and Clinical Medicine 'Gaetano Salvatore', University Magna Graecia of Catanzaro, Viale Tommaso Campanella 185, 88100 Catanzaro, Italy.

出版信息

Sensors (Basel). 2021 Sep 13;21(18):6136. doi: 10.3390/s21186136.

Abstract

The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors.

摘要

关于在临床实践中使用电子胎儿监护(EFM)的标准化指南的可用性并没有有效地帮助解决胎儿心率(FHR)监测方法的主要缺点,该方法仍然存在观察者内和观察者间的变异性,以及对不可靠或有风险的 FHR 记录的分类的不确定性。鉴于 FHR 迹线解释的临床相关性以及 FHR 作为胎儿健康自主神经系统发育标志物的作用,文献中已经提出了许多用于计算机处理和分析 FHR 模式的不同方法。本综述的目的是描述迄今为止在该领域提出的技术、方法和算法,报告它们的主要成就,并讨论它们为科学界和临床界带来的价值。该综述探讨了处理和分析 FHR 信号的以下两种主要方法:传统(或线性)方法,即时间和频域分析,以及不太传统(或非线性)技术。在这种情况下,还讨论了人工智能工具的新兴作用和提供的机会,这些工具代表了 EFM 的未来方向,并特别关注人工神经网络的应用,作者还在案例研究中检查了其在 FHR 信号加速分析中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8917/8469481/963c4bec5f81/sensors-21-06136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验