Suppr超能文献

基于知识和联合搜索在线临床证据的架构。

Architecture for knowledge-based and federated search of online clinical evidence.

作者信息

Coiera Enrico, Walther Martin, Nguyen Ken, Lovell Nigel H

机构信息

Centre for Health Informatics, University of New South Wales, Sydney, Australia.

出版信息

J Med Internet Res. 2005 Oct 24;7(5):e52. doi: 10.2196/jmir.7.5.e52.

Abstract

BACKGROUND

It is increasingly difficult for clinicians to keep up-to-date with the rapidly growing biomedical literature. Online evidence retrieval methods are now seen as a core tool to support evidence-based health practice. However, standard search engine technology is not designed to manage the many different types of evidence sources that are available or to handle the very different information needs of various clinical groups, who often work in widely different settings.

OBJECTIVES

The objectives of this paper are (1) to describe the design considerations and system architecture of a wrapper-mediator approach to federate search system design, including the use of knowledge-based, meta-search filters, and (2) to analyze the implications of system design choices on performance measurements.

METHODS

A trial was performed to evaluate the technical performance of a federated evidence retrieval system, which provided access to eight distinct online resources, including e-journals, PubMed, and electronic guidelines. The Quick Clinical system architecture utilized a universal query language to reformulate queries internally and utilized meta-search filters to optimize search strategies across resources. We recruited 227 family physicians from across Australia who used the system to retrieve evidence in a routine clinical setting over a 4-week period. The total search time for a query was recorded, along with the duration of individual queries sent to different online resources.

RESULTS

Clinicians performed 1662 searches over the trial. The average search duration was 4.9 +/- 3.2 s (N = 1662 searches). Mean search duration to the individual sources was between 0.05 s and 4.55 s. Average system time (ie, system overhead) was 0.12 s.

CONCLUSIONS

The relatively small system overhead compared to the average time it takes to perform a search for an individual source shows that the system achieves a good trade-off between performance and reliability. Furthermore, despite the additional effort required to incorporate the capabilities of each individual source (to improve the quality of search results), system maintenance requires only a small additional overhead.

摘要

背景

临床医生要跟上迅速增长的生物医学文献的步伐日益困难。在线证据检索方法如今被视为支持循证医疗实践的核心工具。然而,标准搜索引擎技术并非设计用于管理现有的多种不同类型的证据来源,也无法满足不同临床群体截然不同的信息需求,这些群体的工作环境往往差异很大。

目的

本文的目的是:(1)描述联合搜索系统设计的包装器 - 中介方法的设计考量和系统架构,包括基于知识的元搜索过滤器的使用;(2)分析系统设计选择对性能测量的影响。

方法

进行了一项试验以评估联合证据检索系统的技术性能,该系统可访问八个不同的在线资源,包括电子期刊、PubMed和电子指南。快速临床系统架构使用通用查询语言在内部重新制定查询,并利用元搜索过滤器优化跨资源的搜索策略。我们从澳大利亚各地招募了227名家庭医生,他们在为期4周的常规临床环境中使用该系统检索证据。记录了查询的总搜索时间以及发送到不同在线资源的单个查询的持续时间。

结果

临床医生在试验中进行了1662次搜索。平均搜索持续时间为4.9 +/- 3.2秒(N = 1662次搜索)。对各个来源的平均搜索持续时间在0.05秒至4.55秒之间。平均系统时间(即系统开销)为0.12秒。

结论

与对单个来源进行搜索的平均时间相比,系统开销相对较小,这表明该系统在性能和可靠性之间实现了良好的权衡。此外,尽管纳入每个单独来源的功能(以提高搜索结果的质量)需要额外的努力,但系统维护仅需要少量的额外开销。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76b9/1550689/643409c3a4e1/jmir_v7i5e52_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验