Suppr超能文献

使用基因组特征的固定和可变阶马尔可夫模型检测水平基因转移的贝叶斯分类器。

Bayesian classifiers for detecting HGT using fixed and variable order markov models of genomic signatures.

作者信息

Dalevi Daniel, Dubhashi Devdatt, Hermansson Malte

机构信息

Department of Computing Science, Chalmers University, SE 412 96 Göteborg, Sweden.

出版信息

Bioinformatics. 2006 Mar 1;22(5):517-22. doi: 10.1093/bioinformatics/btk029. Epub 2006 Jan 10.

Abstract

MOTIVATION

Analyses of genomic signatures are gaining attention as they allow studies of species-specific relationships without involving alignments of homologous sequences. A naïve Bayesian classifier was built to discriminate between different bacterial compositions of short oligomers, also known as DNA words. The classifier has proven successful in identifying foreign genes in Neisseria meningitis. In this study we extend the classifier approach using either a fixed higher order Markov model (Mk) or a variable length Markov model (VLMk).

RESULTS

We propose a simple algorithm to lock a variable length Markov model to a certain number of parameters and show that the use of Markov models greatly increases the flexibility and accuracy in prediction to that of a naïve model. We also test the integrity of classifiers in terms of false-negatives and give estimates of the minimal sizes of training data. We end the report by proposing a method to reject a false hypothesis of horizontal gene transfer.

AVAILABILITY

Software and Supplementary information available at www.cs.chalmers.se/~dalevi/genetic_sign_classifiers/.

摘要

动机

基因组特征分析正受到关注,因为它们允许在不涉及同源序列比对的情况下研究物种特异性关系。构建了一个朴素贝叶斯分类器来区分短寡聚物(也称为DNA词)的不同细菌组成。该分类器已成功用于识别脑膜炎奈瑟菌中的外源基因。在本研究中,我们使用固定高阶马尔可夫模型(Mk)或可变长度马尔可夫模型(VLMk)扩展了分类器方法。

结果

我们提出了一种简单算法,将可变长度马尔可夫模型锁定到一定数量的参数,并表明马尔可夫模型的使用大大提高了预测的灵活性和准确性,相对于朴素模型而言。我们还从假阴性方面测试了分类器的完整性,并给出了训练数据最小规模的估计。我们通过提出一种拒绝水平基因转移错误假设的方法结束了本报告。

可用性

软件和补充信息可在www.cs.chalmers.se/~dalevi/genetic_sign_classifiers/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验