Prodon François, Chenevert Janet, Sardet Christian
BioMarCell, UMR7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer 06230, France.
Dev Biol. 2006 Feb 15;290(2):297-311. doi: 10.1016/j.ydbio.2005.11.025. Epub 2006 Jan 5.
Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal-vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic/PEM RNAs (cER/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the fertilizing sperm remodel this primary animal-vegetal (a-v) axis to establish the embryonic (D-V, A-P) axes. To understand how this radial a-v polarity of eggs is established, we have analyzed the distribution of mitochondria, mRNAs, microtubules and chromosomes in pre-vitellogenic, vitellogenic and post-vitellogenic Germinal Vesicle (GV) stage oocytes and in spontaneously maturing oocytes of the ascidian Ciona intestinalis. We show that myoplasm and postplasmic/PEM RNAs move into the oocyte periphery at the end of oogenesis and that polarization along the a-v axis occurs after maturation in several steps which take 3-4 h to be completed. First, the Germinal Vesicle breaks down, and a meiotic spindle forms in the center of the oocyte. Second, the meiotic spindle moves in an apparently random direction towards the cortex. Third, when the microtubular spindle and chromosomes arrive and rotate in the cortex (defining the animal pole), the subcortical myoplasm domain and cortical postplasmic/PEM RNAs are excluded from the animal pole region, thus concentrating in the vegetal hemisphere. The actin cytoskeleton is required for migration of the spindle and subsequent polarization, whereas these events occur normally in the absence of microtubules. Our observations set the stage for understanding the mechanisms governing primary axis establishment and meiotic maturation in ascidians.
成熟的海鞘卵母细胞停滞于减数分裂 I 的中期(中期 I),并呈现出明显的动植物极性:一个小的减数分裂纺锤体位于动物极下方,两个相邻的皮质和皮质下区域分别富含皮质内质网和胞质后/ PEM RNA(cER / mRNA 区域)以及线粒体(肌质区域),排列在赤道和植物区域。受精精子引发的对称性破坏事件重塑了这条主要的动植物(a - v)轴,以建立胚胎的(背腹,前后)轴。为了了解卵子的这种径向 a - v 极性是如何建立的,我们分析了玻璃海鞘未成熟卵黄生成期、卵黄生成期和卵黄生成后期生发泡(GV)期卵母细胞以及自发成熟卵母细胞中线粒体、mRNA、微管和染色体的分布。我们发现,肌质和胞质后/ PEM RNA 在卵子发生末期移入卵母细胞周边,并且沿着 a - v 轴的极化在成熟后分几步发生,这一过程需要 3 - 4 小时才能完成。首先,生发泡破裂,减数分裂纺锤体在卵母细胞中心形成。其次,减数分裂纺锤体朝着皮质以明显随机的方向移动。第三,当微管纺锤体和染色体到达皮质并在其中旋转(确定动物极)时,皮质下肌质区域和皮质胞质后/ PEM RNA 被排除在动物极区域之外,从而集中在植物半球。肌动蛋白细胞骨架是纺锤体迁移和后续极化所必需的,而这些事件在没有微管的情况下也能正常发生。我们的观察结果为理解海鞘中控制主轴建立和减数分裂成熟的机制奠定了基础。