Suppr超能文献

尖峰序列的局部重排提高了尖峰序列频谱分析的准确性。

Local shuffling of spike trains boosts the accuracy of spike train spectral analysis.

作者信息

Rivlin-Etzion Michal, Ritov Ya'acov, Heimer Gali, Bergman Hagai, Bar-Gad Izhar

机构信息

Center for Neural Computation, The Hebrew University, Jerusalem, Israel.

出版信息

J Neurophysiol. 2006 May;95(5):3245-56. doi: 10.1152/jn.00055.2005. Epub 2006 Jan 11.

Abstract

Spectral analysis of neuronal spike trains is an important tool in understanding the characteristics of neuronal activity by providing insights into normal and pathological periodic oscillatory phenomena. However, the refractory period creates high-frequency modulations in spike-train firing rate because any rise in the discharge rate causes a descent in subsequent time bins, leading to multifaceted modifications in the structure of the spectrum. Thus the power spectrum of the spiking activity (autospectrum) displays elevated energy in high frequencies relative to the lower frequencies. The spectral distortion is more dominant in neurons with high firing rates and long refractory periods and can lead to reduced identification of low-frequency oscillations (such as the 5- to 10-Hz burst oscillations typical of Parkinsonian basal ganglia and thalamus). We propose a compensation process that uses shuffling of interspike intervals (ISIs) for reliable identification of oscillations in the entire frequency range. This compensation is further improved by local shuffling, which preserves the slow changes in the discharge rate that may be lost in global shuffling. Cross-spectra of pairs of neurons are similarly distorted regardless of their correlation level. Consequently, identification of low-frequency synchronous oscillations, even for two neurons recorded by a single electrode, is improved by ISI shuffling. The ISI local shuffling is computed with confidence limits that are based on the first-order statistics of the spike trains, thus providing a reliable estimation of auto- and cross-spectra of spike trains and making it an optimal tool for physiological studies of oscillatory neuronal phenomena.

摘要

神经元放电序列的频谱分析是理解神经元活动特征的重要工具,它能深入洞察正常和病理性周期性振荡现象。然而,不应期会在放电序列的发放率中产生高频调制,因为放电率的任何上升都会导致后续时间间隔内发放率下降,从而使频谱结构产生多方面的改变。因此,放电活动的功率谱(自谱)相对于低频而言,在高频处显示出更高的能量。这种频谱失真在发放率高且不应期长的神经元中更为显著,并且可能导致低频振荡(如帕金森病基底神经节和丘脑典型的5至10赫兹爆发振荡)的识别能力下降。我们提出了一种补偿方法,该方法利用峰峰间期(ISI)的重排来可靠地识别整个频率范围内的振荡。通过局部重排进一步改进了这种补偿,局部重排保留了在全局重排中可能丢失的发放率的缓慢变化。无论神经元对之间的相关水平如何,它们的互谱都会有类似的失真。因此,即使对于由单个电极记录的两个神经元,通过ISI重排也能提高低频同步振荡的识别能力。ISI局部重排是根据放电序列的一阶统计量计算出置信限来进行的,从而为放电序列的自谱和互谱提供可靠估计,使其成为研究振荡神经元现象的理想工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验