Suppr超能文献

从细胞外尖峰序列估计膜电压相关性。

Estimating membrane voltage correlations from extracellular spike trains.

作者信息

Dorn Jessy D, Ringach Dario L

机构信息

Interdepartmental Program for Neuroscience, Brain Research Institute and Departments of Neurobiology and Psychology, and Jules Stein Eye Institute, University of California, Los Angeles, California 90095, USA.

出版信息

J Neurophysiol. 2003 Apr;89(4):2271-8. doi: 10.1152/jn.000889.2002.

Abstract

The cross-correlation coefficient between neural spike trains is a commonly used tool in the study of neural interactions. Two well-known complications that arise in its interpretation are 1) modulations in the correlation coefficient may result solely from changes in the mean firing rate of the cells and 2) the mean firing rates of the neurons impose upper and lower bounds on the correlation coefficient whose absolute values differ by an order of magnitude or more. Here, we propose a model-based approach to the interpretation of spike train correlations that circumvents these problems. The basic idea of our proposal is to estimate the cross-correlation coefficient between the membrane voltages of two cells from their extracellular spike trains and use the resulting value as the degree of correlation (or association) of neural activity. This is done in the context of a model that assumes the membrane voltages of the cells have a joint normal distribution and spikes are generated by a simple thresholding operation. We show that, under these assumptions, the estimation of the correlation coefficient between the membrane voltages reduces to the calculation of a tetrachoric correlation coefficient (a measure of association in nominal data introduced by Karl Pearson) on a contingency table calculated from the spike data. Simulations of conductance-based leaky integrate-and-fire neurons indicate that, despite its simplicity, the technique yields very good estimates of the intracellular membrane voltage correlation from the extracellular spike trains in biologically realistic models.

摘要

神经脉冲序列之间的互相关系数是研究神经相互作用时常用的工具。在对其进行解释时出现的两个众所周知的复杂问题是:1)相关系数的调制可能仅由细胞平均放电率的变化引起;2)神经元的平均放电率对相关系数施加了上下限,其绝对值相差一个数量级或更多。在此,我们提出一种基于模型的方法来解释脉冲序列相关性,以规避这些问题。我们提议的基本思想是根据两个细胞的细胞外脉冲序列估计它们膜电压之间的互相关系数,并将所得值用作神经活动的相关程度(或关联程度)。这是在一个模型的背景下完成的,该模型假设细胞的膜电压具有联合正态分布,并且脉冲是通过简单的阈值操作产生的。我们表明,在这些假设下,膜电压之间相关系数的估计简化为根据脉冲数据计算的列联表上的四分相关系数(由卡尔·皮尔逊引入的名义数据中的关联度量)的计算。基于电导的漏电积分发放神经元的模拟表明,尽管该技术很简单,但在生物学现实模型中,它能从细胞外脉冲序列中对细胞内膜电压相关性给出非常好的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验