Xu Ying, Glansdorff Nicolas, Labedan Bernard
Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, New York 11794-5000, USA.
BMC Genomics. 2006 Jan 12;7:4. doi: 10.1186/1471-2164-7-4.
The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ) present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH) is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis.
The argH-A fusion, designated argH(A), and discovered in Moritella was found to be present in (and confined to) marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A) sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A), we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A)-like sequence clusters with argH in an operon-like fashion. In this group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this short NAGS version for arginine biosynthesis.
The gene-enzyme relationship for the first committed step of arginine biosynthesis should now be considered in a new perspective. In addition to bifunctional OAT, nature appears to implement at least three alternatives for the acetylation of glutamate. It is possible to propose evolutionary relationships between them starting from the same ancestral N-acetyltransferase domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme, whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli) or with argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current nomenclature since the same gene name argA has been used to designate structurally different entities. Clarifying the confusion would help to prevent erroneous genomic annotation.
L-谷氨酸的N-乙酰化被视为将谷氨酸用于精氨酸生物合成的一种普遍代谢策略。直到最近,人们认为该反应由两种酶中的一种催化:(i)经典的N-乙酰谷氨酸合酶(NAGS,基因argA),几十年前首次在大肠杆菌和铜绿假单胞菌中被鉴定出来,在脊椎动物中也存在;(ii)鸟氨酸乙酰转移酶(OAT,基因argJ)的双功能形式,存在于细菌、古菌和许多真核生物中。本文聚焦于谷氨酸乙酰化一个新的且令人惊讶的方面。我们最近发现,在两种海洋γ-变形菌——深渊莫里塔氏菌和深海莫里塔氏菌中,精氨酸生物合成中最后一种酶(argH)的基因与一段短序列融合,该序列对应于NAGS的C末端、编码N-乙酰转移酶的结构域,并且能够互补大肠杆菌的argA突变体。最近,其他作者在结核分枝杆菌中鉴定出一个与该短C末端结构域对应的独立基因,该基因编码一种新型NAGS。我们研究了两个原核生物域在精氨酸生物合成第一步中基因与酶的关系模式。
在海洋γ-变形菌嗜压莫里塔氏菌中发现的argH-A融合体(命名为argH(A))存在于(且仅限于)交替单胞菌属和弧菌属样的海洋γ-变形菌中。除了嗜热栖热放线菌和嗜盐栖冷假交替单胞菌外,它们大多数都有经典的NAGS,不过嗜热栖热放线菌和嗜盐栖冷假交替单胞菌在没有精氨酸的情况下也能生长,因此似乎依赖arg(A)序列进行精氨酸生物合成。在原核生物基因组中筛选虚拟的argH-X “融合体”(其中X代表arg(A)的同源物),我们检索到大量细菌和几种古菌,它们都没有经典的NAGS。在嗜热栖热放线菌和耐辐射奇异球菌的例子中,类arg(A)序列与argH以操纵子样的方式聚集在一起。在这组序列中,我们发现了在结核分枝杆菌中鉴定出的那种短的新型NAGS。在这些生物中,至少栖热放线菌属、分枝杆菌属和链霉菌属的物种似乎依赖这种短的NAGS形式进行精氨酸生物合成。
现在应该从一个新的角度考虑精氨酸生物合成第一步的基因与酶的关系。除了双功能OAT外,自然界似乎还实现了至少三种谷氨酸乙酰化的替代方式。从同一个祖先N-乙酰转移酶结构域出发,可以推测它们之间的进化关系。在结核分枝杆菌和许多其他细菌中,这个结构域进化成了一种独立的酶,而它要么与氨基甲酸酯激酶折叠结构融合形成经典的NAGS(如在大肠杆菌中),要么与argH融合(如在海洋γ-变形菌中)。此外,由于相同的基因名称argA被用来指代结构不同的实体,当前的命名法急需澄清。澄清这种混淆将有助于防止错误的基因组注释。