Suppr超能文献

通过排空力有效交联的肌动蛋白网络的微观和宏观流变学性质。

Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.

作者信息

Tharmann R, Claessens M M A E, Bausch A R

机构信息

E22 Lehrstuhl für Biophysik, Technische Universität München, 85747 Garching, Germany.

出版信息

Biophys J. 2006 Apr 1;90(7):2622-7. doi: 10.1529/biophysj.105.070458. Epub 2006 Jan 13.

Abstract

The structure and rheology of cytoskeletal networks are regulated by actin binding proteins. Aside from these specific interactions, depletion forces can also alter the properties of cytoskeletal networks. Here we demonstrate that the addition of poly(ethylene glycol) (PEG) as a depletion agent results not only in severe structural changes, but also in alterations in mechanical properties of actin solutions. In the plateau of the elastic modulus two regimes can be distinguished by micro and macrorheological methods. In the first, the elastic modulus increases only slightly with increasing depletion agent, whereas above a critical concentration c*, a strong increase of cPEG6k3.5 is observed in a distinct second regime. Microrheological data and electron microscopy images show a homogenous network of actin filaments in the first regime, whereas at higher PEG concentrations a network of actin bundles is observed. The concentration dependence of the plateau modulus G0, the shift in entanglement time taue, and the nonlinear response indicate that below c* the network becomes effectively cross-linked, whereas above c* G0(cPEG6k) is primarily determined by the network of bundles that exhibits a linearly increasing bundle thickness.

摘要

细胞骨架网络的结构和流变学由肌动蛋白结合蛋白调节。除了这些特定的相互作用外,排空力也可以改变细胞骨架网络的性质。在这里,我们证明添加聚乙二醇(PEG)作为排空剂不仅会导致严重的结构变化,还会改变肌动蛋白溶液的力学性能。在弹性模量的平稳段,可以通过微观和宏观流变学方法区分两种状态。在第一种状态下,弹性模量仅随排空剂浓度的增加略有增加,而在高于临界浓度c时,在明显的第二种状态下观察到cPEG6k3.5的强烈增加。微观流变学数据和电子显微镜图像显示在第一种状态下肌动蛋白丝形成均匀网络,而在较高的PEG浓度下观察到肌动蛋白束网络。平稳模量G0的浓度依赖性、缠结时间taue的变化以及非线性响应表明,在c以下网络有效地交联,而在c*以上G0(cPEG6k)主要由束网络决定,该束网络的束厚度呈线性增加。

相似文献

1
Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.
Biophys J. 2006 Apr 1;90(7):2622-7. doi: 10.1529/biophysj.105.070458. Epub 2006 Jan 13.
2
Cross-linking molecules modify composite actin networks independently.
Phys Rev Lett. 2008 Sep 12;101(11):118102. doi: 10.1103/PhysRevLett.101.118102. Epub 2008 Sep 10.
3
Micro- and macrorheological properties of isotropically cross-linked actin networks.
Biophys J. 2008 Jan 15;94(2):688-93. doi: 10.1529/biophysj.107.112417. Epub 2007 Sep 14.
4
Unfolding cross-linkers as rheology regulators in F-actin networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041909. doi: 10.1103/PhysRevE.75.041909. Epub 2007 Apr 16.
6
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Phys Rev Lett. 2004 Oct 29;93(18):188102. doi: 10.1103/PhysRevLett.93.188102.
7
Rheology of semiflexible bundle networks with transient linkers.
Phys Rev Lett. 2014 Jun 13;112(23):238102. doi: 10.1103/PhysRevLett.112.238102. Epub 2014 Jun 10.
8
Morphogenesis of liposomes encapsulating actin depends on the type of actin-crosslinking.
J Mol Biol. 1999 Mar 26;287(2):293-300. doi: 10.1006/jmbi.1999.2592.
9
Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
Biomech Model Mechanobiol. 2015 Oct;14(5):1143-55. doi: 10.1007/s10237-015-0660-6. Epub 2015 Feb 24.
10
Viscoelasticity of actin-gelsolin networks in the presence of filamin.
Eur J Biochem. 1997 Jun 1;246(2):373-9. doi: 10.1111/j.1432-1033.1997.00373.x.

引用本文的文献

1
Morphological control of bundled actin networks subject to fixed-mass depletion.
J Chem Phys. 2024 Aug 21;161(7). doi: 10.1063/5.0197269.
2
Water-Driven Sol-Gel Transition in Native Cellulose/1-Ethyl-3-methylimidazolium Acetate Solutions.
ACS Macro Lett. 2024 Jan 29;13(2):219-226. doi: 10.1021/acsmacrolett.3c00710.
3
Highly flexible PEG-LifeAct constructs act as tunable biomimetic actin crosslinkers.
Soft Matter. 2024 Jan 31;20(5):971-977. doi: 10.1039/d3sm01341c.
4
Crowding alters F-actin secondary structure and hydration.
Commun Biol. 2023 Sep 2;6(1):900. doi: 10.1038/s42003-023-05274-3.
5
Heavy water induces bundling in entangled actin networks.
RSC Adv. 2023 Aug 18;13(35):24795-24800. doi: 10.1039/d3ra03917j. eCollection 2023 Aug 11.
7
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions.
Front Mol Biosci. 2021 Nov 26;8:760950. doi: 10.3389/fmolb.2021.760950. eCollection 2021.
8
Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors.
Front Phys. 2021 May;9. doi: 10.3389/fphy.2021.675885. Epub 2021 May 27.
9
Crowding tunes the organization and mechanics of actin bundles formed by crosslinking proteins.
FEBS Lett. 2021 Jan;595(1):26-40. doi: 10.1002/1873-3468.13949. Epub 2020 Oct 21.
10
Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization.
Nat Commun. 2019 Nov 7;10(1):5078. doi: 10.1038/s41467-019-13125-1.

本文引用的文献

1
Stiff polymers, foams, and fiber networks.
Phys Rev Lett. 2006 Jan 13;96(1):017802. doi: 10.1103/PhysRevLett.96.017802. Epub 2006 Jan 9.
2
Equilibrium bundle size of rodlike polyelectrolytes with counterion-induced attractive interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):060801. doi: 10.1103/PhysRevE.71.060801. Epub 2005 Jun 20.
3
Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3673-8. doi: 10.1073/pnas.0404140102. Epub 2005 Feb 24.
4
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Phys Rev Lett. 2004 Oct 29;93(18):188102. doi: 10.1103/PhysRevLett.93.188102.
6
Polymer-induced bundling of F actin and the depletion force.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051907. doi: 10.1103/PhysRevE.69.051907. Epub 2004 May 18.
7
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9636-41. doi: 10.1073/pnas.0308733101. Epub 2004 Jun 21.
8
Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials.
Biophys J. 2004 Jun;86(6):4004-14. doi: 10.1529/biophysj.103.037812.
9
Anomalous diffusion probes microstructure dynamics of entangled F-actin networks.
Phys Rev Lett. 2004 Apr 30;92(17):178101. doi: 10.1103/PhysRevLett.92.178101. Epub 2004 Apr 29.
10
Elastic behavior of cross-linked and bundled actin networks.
Science. 2004 May 28;304(5675):1301-5. doi: 10.1126/science.1095087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验