UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA.
School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA.
J Chem Phys. 2024 Aug 21;161(7). doi: 10.1063/5.0197269.
Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U∗ as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation U∗ ∼ qζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.
耗竭相互作用被认为对细胞溶质中细胞内结构的组织有重要贡献。耗竭相互作用的强度取决于物理参数,如耗竭物的数密度和耗竭物的大小比。已知细胞通过改变广泛分布大小的蛋白质的拷贝数来动态调节这两个参数。然而,哺乳动物细胞也被认为在整个细胞周期内保持非常恒定的总蛋白质质量密度,在 0.5%以内。因此,我们想知道当总耗竭物质量固定时,耗竭相互作用的强度如何变化,即固定质量耗竭。我们通过缩放论点以及通过研究在计算机和体外重建的半刚性肌动蛋白网络上的耗竭效应来回答这个问题。我们检查作为 q 的函数的最大耗竭相互作用势能 U*,q 是耗竭物和被耗竭物质之间的大小比。我们发现了一个缩放关系 U*∼qζ,对于两种情况:固定体积分数 φ 和固定质量密度 ρ。对于固定体积分数,我们报告 ζ < 0。对于固定质量密度情况,我们报告 ζ > 0,这表明随着耗竭物大小比的增加,耗竭相互作用强度增加。为了验证这一预测,我们在不同的耗竭物分子聚乙二醇 (PEG) 的大小下,以固定的质量浓度制备了我们的纤维网络。我们通过网格大小来描述模拟中的耗竭相互作用强度。在实验中,我们观察到两种不同的肌动蛋白网络形态,我们称之为弱束和强束。我们确定了一个质量浓度,在这个浓度下,不同的 PEG 耗竭物大小会导致弱束或强束形态。对于这些条件,我们发现不同形态之间的网格大小和纤维之间的束内间距没有显著差异,而两种状态之间的动态光散射弛豫时间和存储模量有显著差异。我们的结果表明,通过控制耗竭物的大小,可以调节肌动蛋白网络的形态和力学,并深入了解在与活细胞相关的固定耗竭物质量约束下的耗竭相互作用机制。