Suppr超能文献

连锁分析后用于关联研究的定量连锁分数。

A quantitative linkage score for an association study following a linkage analysis.

作者信息

Wang Tao, Elston Robert C

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, USA.

出版信息

BMC Genet. 2006 Jan 20;7:5. doi: 10.1186/1471-2156-7-5.

Abstract

BACKGROUND

Currently, a commonly used strategy for mapping complex quantitative traits is to use a genome-wide linkage analysis to narrow suspected genes to regions on a scale of centiMorgans (cM), followed by an association analysis to fine map the genetic variation in regions showing linkage. Two important questions arise in the design and the resulting inference at the association stage of this sequential procedure: (1) how should we design an efficient association study given the information provided by the previous linkage study? and (2) can an association in a linkage region explain, in part, the detected linkage signal?

RESULTS

We derive a quantitative linkage score (QLS) based on Haseman-Elston regression (Haseman and Elston 1972) and make use of this score to address both questions. In designing an association study, the selection of a subsample from the linkage study sample can be guided by the linkage information summarized in the QLS. When heterogeneity exists, we show that selection based on the QLS can increase the proportion of sample individuals from the subpopulation affected by a disease allele and therefore greatly improves the power of the association study. For the resulting inference, we frame as a hypothesis test the question of whether a linkage signal in a region can be in part explained by a marker allele. A simple one sided paired t-statistic is defined by comparing the two sets of QLSs obtained with/without modeling a marker association: a significant difference indicates that the marker can at least partly account for the detected linkage. We also show that this statistic can be used to detect a spurious association.

CONCLUSION

All our results suggest that a careful examination of QLSs should be helpful for understanding the results of both association and linkage studies.

摘要

背景

目前,用于定位复杂数量性状的一种常用策略是进行全基因组连锁分析,将可疑基因缩小到厘摩(cM)尺度的区域,随后进行关联分析以精细定位显示连锁的区域中的遗传变异。在这个顺序过程的关联阶段的设计和结果推断中出现了两个重要问题:(1)鉴于先前连锁研究提供的信息,我们应如何设计高效的关联研究?以及(2)连锁区域中的关联能否部分解释检测到的连锁信号?

结果

我们基于哈斯曼 - 埃尔斯顿回归(哈斯曼和埃尔斯顿,1972年)推导出定量连锁评分(QLS),并利用该评分来解决这两个问题。在设计关联研究时,从连锁研究样本中选择子样本可以由QLS中总结的连锁信息来指导。当存在异质性时,我们表明基于QLS的选择可以增加受疾病等位基因影响的亚群中样本个体的比例,从而大大提高关联研究的效力。对于结果推断,我们将一个区域中的连锁信号是否可以部分由标记等位基因解释的问题构建为一个假设检验。通过比较在建模标记关联/未建模标记关联的情况下获得的两组QLS来定义一个简单的单侧配对t统计量:显著差异表明该标记至少可以部分解释检测到的连锁。我们还表明,该统计量可用于检测虚假关联。

结论

我们所有的结果表明,仔细检查QLS应该有助于理解关联研究和连锁研究的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/715c/1402322/e12f307ef002/1471-2156-7-5-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验