Suppr超能文献

作为介导多巴胺释放的神经元烟碱型乙酰胆碱受体拮抗剂的单季铵盐和双季铵盐的定量构效关系建模。

QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.

作者信息

Zheng Fang, Bayram Ersin, Sumithran Sangeetha P, Ayers Joshua T, Zhan Chang-Guo, Schmitt Jeffrey D, Dwoskin Linda P, Crooks Peter A

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.

出版信息

Bioorg Med Chem. 2006 May 1;14(9):3017-37. doi: 10.1016/j.bmc.2005.12.036. Epub 2006 Jan 20.

Abstract

Back-propagation artificial neural networks (ANNs) were trained on a dataset of 42 molecules with quantitative IC50 values to model structure-activity relationships of mono- and bis-quaternary ammonium salts as antagonists at neuronal nicotinic acetylcholine receptors (nAChR) mediating nicotine-evoked dopamine release. The ANN QSAR models produced a reasonable level of correlation between experimental and calculated log(1/IC50) (r2=0.76, r(cv)2=0.64). An external test for the models was performed on a dataset of 18 molecules with IC50 values >1 microM. Fourteen of these were correctly classified. Classification ability of various models, including self-organizing maps (SOM), for all 60 molecules was also evaluated. A detailed analysis of the modeling results revealed the following relative contributions of the used descriptors to the trained ANN QSAR model: approximately 44.0% from the length of the N-alkyl chain attached to the quaternary ammonium head group, approximately 20.0% from Moriguchi octanol-water partition coefficient of the molecule, approximately 13.0% from molecular surface area, approximately 12.6% from the first component shape directional WHIM index/unweighted, approximately 7.8% from Ghose-Crippen molar refractivity, and 2.6% from the lowest unoccupied molecular orbital energy. The ANN QSAR models were also evaluated using a set of 13 newly synthesized compounds (11 biologically active antagonists and two biologically inactive compounds) whose structures had not been previously utilized in the training set. Twelve among 13 compounds were predicted to be active which further supports the robustness of the trained models. Other insights from modeling include a structural modification in the bis-quinolinium series that involved replacing the 5 and/or 8 as well as the 5' and/or 8' carbon atoms with nitrogen atoms, predicting inactive compounds. Such data can be effectively used to reduce synthetic and in vitro screening activities by eliminating compounds of predicted low activity from the pool of candidate molecules for synthesis. The application of the ANN QSAR model has led to the successful discovery of six new compounds in this study with experimental IC50 values of less than 0.1 microM at nAChR subtypes responsible for mediating nicotine-evoked dopamine release, demonstrating that the ANN QSAR model is a valuable aid to drug discovery.

摘要

反向传播人工神经网络(ANN)在一个包含42种具有定量IC50值的分子的数据集上进行训练,以模拟单季铵盐和双季铵盐作为神经元烟碱型乙酰胆碱受体(nAChR)介导尼古丁诱发多巴胺释放的拮抗剂的构效关系。ANN定量构效关系(QSAR)模型在实验值与计算得到的log(1/IC50)之间产生了合理水平的相关性(r2 = 0.76,交叉验证r2 = 0.64)。对一个包含18种IC50值>1 microM的分子的数据集进行了模型的外部测试。其中14种被正确分类。还评估了包括自组织映射(SOM)在内的各种模型对所有60种分子的分类能力。对建模结果的详细分析揭示了所使用的描述符对训练后的ANN QSAR模型的以下相对贡献:与季铵头基相连的N - 烷基链长度贡献约44.0%,分子的森口辛醇 - 水分配系数贡献约20.0%,分子表面积贡献约13.0%,第一成分形状方向加权直方图矩指数/未加权贡献约12.6%,戈什 - 克里平摩尔折射度贡献约7.8%,最低未占分子轨道能量贡献2.6%。还使用一组13种新合成的化合物(11种生物活性拮抗剂和两种生物无活性化合物)对ANN QSAR模型进行了评估,这些化合物的结构此前未用于训练集。13种化合物中有12种被预测具有活性,这进一步支持了训练模型的稳健性。建模的其他见解包括双喹啉系列中的一种结构修饰,即涉及用氮原子取代5和/或8以及5'和/或8'碳原子,预测得到无活性化合物。此类数据可有效地用于通过从合成候选分子库中消除预测低活性的化合物来减少合成和体外筛选活动。在本研究中,ANN QSAR模型的应用成功发现了六种新化合物,它们在介导尼古丁诱发多巴胺释放的nAChR亚型上的实验IC50值小于0.1 microM,这表明ANN QSAR模型对药物发现是一种有价值的辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验