Hansen Alexandar L, Al-Hashimi Hashim M
Department of Chemistry and Biophysics Research Division, The University of Michigan, Ann Arbor, MI 48109, USA.
J Magn Reson. 2006 Apr;179(2):299-307. doi: 10.1016/j.jmr.2005.12.012. Epub 2006 Jan 23.
Using residual chemical shift anisotropies (RCSAs) measured in a weakly aligned stem-loop RNA, we examined the carbon chemical shift anisotropy (CSA) tensors of nucleobase adenine C2, pyrimidine C5 and C6, and purine C8. The differences between the measured RCSAs and the values back-calculated using three nucleobase carbon CSA sets [D. Stueber, D.M. Grant, 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551; D. Sitkoff, D.A. Case, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. NMR Spectrosc. 32 (1998) 165-190; R. Fiala, J. Czernek, V. Sklenar, Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids, J. Biomol. NMR 16 (2000) 291-302] reported previously for mononucleotides (1.4 Hz) is significantly smaller than the predicted RCSA range (-10-10 Hz) but remains larger than the RCSA measurement uncertainty (0.8 Hz). Fitting of the traceless principal CSA values to the measured RCSAs using a grid search procedure yields a cytosine C5 CSA magnitude (CSAa=(3/2.(delta11(2)+delta22(2)+delta33(2)))1/2=173+/-21 ppm), which is significantly higher than the reported mononucleotide values (131-138 ppm) and a guanine C8 CSAa (148+/-13 ppm) that is in very good agreement with the mononucleotide value reported by solid-state NMR [134 ppm, D. Stueber, D.M. Grant, 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551]. Owing to a unique sensitivity to directions normal to the base plane, the RCSAs can be translated into useful long-range orientational constraints for RNA structure determination even after allowing for substantial uncertainty in the nucleobase carbon CSA tensors.
利用在弱排列的茎环RNA中测量的剩余化学位移各向异性(RCSA),我们研究了核碱基腺嘌呤C2、嘧啶C5和C6以及嘌呤C8的碳化学位移各向异性(CSA)张量。测量得到的RCSA与使用先前报道的三种核碱基碳CSA集[D. Stueber, D.M. Grant, 腺苷、一水合鸟苷、2'-脱氧胸苷和胞苷中的13C和15N化学位移张量,J. Am. Chem. Soc. 124 (2002) 10539 - 10551;D. Sitkoff, D.A. Case, 蛋白质和核酸中化学位移各向异性的理论,Prog. NMR Spectrosc. 32 (1998) 165 - 190;R. Fiala, J. Czernek, V. Sklenar, 用于核酸的横向弛豫优化三共振NMR实验,J. Biomol. NMR 16 (2000) 291 - 302]对单核苷酸反算得到的值(1.4 Hz)之间的差异,明显小于预测的RCSA范围(-10 - 10 Hz),但仍大于RCSA测量不确定度(0.8 Hz)。使用网格搜索程序将无迹主CSA值拟合到测量的RCSA,得到胞嘧啶C5的CSA大小(CSAa = (3/2·(δ11(2) + δ22(()) + δ33(2)))1/2 = 173 ± 21 ppm),该值明显高于报道的单核苷酸值(131 - 138 ppm),以及鸟嘌呤C8的CSA大小(148 ± 13 ppm),这与固态NMR报道的单核苷酸值[134 ppm, D.Stueber, D.M. Grant, 腺苷、一水合鸟苷、2'-脱氧胸苷和胞苷中的13C和15N化学位移张量,J. Am. Chem. Soc. 124 (2002) 10539 - 10551]非常吻合。由于对垂直于碱基平面方向具有独特的敏感性,即使在考虑核碱基碳CSA张量存在相当大的不确定性之后,RCSA仍可转化为用于RNA结构测定的有用的长程取向约束。