Sekirnjak Chris, Hottowy Pawel, Sher Alexander, Dabrowski Wladyslaw, Litke A M, Chichilnisky E J
The Salk Institute for Biological Studies, San Diego, California, USA.
J Neurophysiol. 2006 Jun;95(6):3311-27. doi: 10.1152/jn.01168.2005. Epub 2006 Jan 25.
Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred micrometers. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study, we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We used microfabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 microm, spaced 60 microm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically <0.1 mC/cm2 for a pulse duration of 100 micros, corresponding to charge thresholds of <100 pC. Stimulation remained effective after several hours and at high frequencies. To show that closely spaced electrodes can elicit independent ganglion cell responses, we used the multielectrode array to stimulate several nearby ganglion cells simultaneously. From these data, we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
现有的用于盲人的视网膜外植入物旨在使用少数直径为几百微米的电极对大量存活的视网膜神经元进行电刺激。为了提高人工视觉的空间分辨率,需要比目前使用的电极小得多的电极。在本研究中,我们在大鼠、豚鼠和猴的离体视网膜片中刺激并记录了神经节细胞。我们使用了由61个直径在6至25微米之间、间距为60微米的铂盘电极组成的微制造六边形阵列。电荷平衡电流脉冲在短至0.2毫秒的潜伏期诱发一个或两个尖峰,并且通常仅刺激一个或少数几个记录到的神经节细胞。应用几种突触阻滞剂并未消除诱发反应,这意味着神经节细胞被直接激活。对于100微秒的脉冲持续时间,阈值电荷密度通常<0.1 mC/cm2,对应于<100 pC的电荷阈值。刺激在数小时后和高频下仍保持有效。为了表明紧密间隔的电极可以引发独立的神经节细胞反应,我们使用多电极阵列同时刺激几个附近的神经节细胞。从这些数据中,我们得出结论,用小直径电极阵列对哺乳动物视网膜进行电刺激是可行的,并且可以在低电荷密度下提供高的时间和空间精度。我们回顾了以前的视网膜外刺激研究,并在其他32篇出版物的背景下讨论了我们的结果,比较了阈值参数和安全极限。