Suppr超能文献

多重映射方法:比较蛋白质结构建模中序列到结构比对问题的一种新方法。

Multiple mapping method: a novel approach to the sequence-to-structure alignment problem in comparative protein structure modeling.

作者信息

Rai Brajesh K, Fiser András

机构信息

Department of Biochemistry and Seaver Center for Bioinformatics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Proteins. 2006 May 15;63(3):644-61. doi: 10.1002/prot.20835.

Abstract

A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.

摘要

比较蛋白质结构建模中的一个主要瓶颈是目标序列与模板结构之间输入比对的质量。有多种比对方法可供使用,但没有一种技术能在所有情况下都 consistently 产生良好的解决方案。与彼此相比,由替代方法产生的比对在某些片段中可能更优,但在其他片段中可能较差;因此,准确的解决方案通常需要它们的最佳组合。为了解决这个问题,我们开发了一种新方法,即多重映射方法(MMM)。该算法首先从一组输入比对中识别出交替比对区域。使用复合评分函数对这些交替比对的片段进行评分,该函数确定它们在模板结构环境中的适合度。一组替代片段中得分最高的区域与比对的核心部分相结合,以产生最终的 MMM 比对。使用两到四种比对方法的 11 种组合,在一个包含 1400 个蛋白质对的数据集上对该算法进行了测试。在所有情况下,MMM 通过将比对错误减少 3%至 17%,显示出统计学上的显著改进。MMM 与两个比对元服务器相比也表现出色。该算法计算效率高;因此,它是基因组规模建模研究的合适工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验