Suppr超能文献

基于正则化模板分类技术的蛋白质三级结构预测。

Prediction of Protein Tertiary Structure via Regularized Template Classification Techniques.

机构信息

Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007 Oviedo, Spain.

Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, OH Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Molecules. 2020 May 26;25(11):2467. doi: 10.3390/molecules25112467.

Abstract

We discuss the use of the regularized linear discriminant analysis (LDA) as a model reduction technique combined with particle swarm optimization (PSO) in protein tertiary structure prediction, followed by structure refinement based on singular value decomposition (SVD) and PSO. The algorithm presented in this paper corresponds to the category of template-based modeling. The algorithm performs a preselection of protein templates before constructing a lower dimensional subspace via a regularized LDA. The protein coordinates in the reduced spaced are sampled using a highly explorative optimization algorithm, regressive-regressive PSO (RR-PSO). The obtained structure is then projected onto a reduced space via singular value decomposition and further optimized via RR-PSO to carry out a structure refinement. The final structures are similar to those predicted by best structure prediction tools, such as Rossetta and Zhang servers. The main advantage of our methodology is that alleviates the ill-posed character of protein structure prediction problems related to high dimensional optimization. It is also capable of sampling a wide range of conformational space due to the application of a regularized linear discriminant analysis, which allows us to expand the differences over a reduced basis set.

摘要

我们讨论了将正则线性判别分析(LDA)作为模型降维技术与粒子群优化(PSO)相结合,应用于蛋白质三级结构预测的方法,然后基于奇异值分解(SVD)和 PSO 对结构进行细化。本文提出的算法属于基于模板的建模范畴。该算法在通过正则化 LDA 构建低维子空间之前,先对蛋白质模板进行预选。在降维空间中,使用高度探索性的优化算法,回归回归 PSO(RR-PSO)对蛋白质坐标进行采样。得到的结构通过奇异值分解投影到降维空间中,然后通过 RR-PSO 进一步优化,以进行结构细化。最终的结构与 Rosetta 和 Zhang 服务器等最佳结构预测工具预测的结构相似。我们方法的主要优点是减轻了与高维优化相关的蛋白质结构预测问题的不适定性。由于正则化线性判别分析的应用,它还能够对广泛的构象空间进行采样,这使得我们能够在简化的基础上扩展差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89e1/7321371/299f5d3c9966/molecules-25-02467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验