Guranowski Andrzej, Starzyńska Elzbieta, Pietrowska-Borek Małgorzata, Jemielity Jacek, Kowalska Joanna, Darzynkiewicz Edward, Thompson Mark J, Blackburn G Michael
Department of Biochemistry and Biotechnology, Agricultural University, Poznań, Poland.
FEBS J. 2006 Feb;273(4):829-38. doi: 10.1111/j.1742-4658.2006.05115.x.
Adenosine 5'-polyphosphates have been identified in vitro, as products of certain enzymatic reactions, and in vivo. Although the biological role of these compounds is not known, there exist highly specific hydrolases that degrade nucleoside 5'-polyphosphates into the corresponding nucleoside 5'-triphosphates. One approach to understanding the mechanism and function of these enzymes is through the use of specifically designed phosphonate analogues. We synthesized novel nucleotides: alpha,beta-methylene-adenosine 5'-tetraphosphate (pppCH2pA), beta,gamma-methylene-adenosine 5'-tetraphosphate (ppCH2ppA), gamma,delta-methylene-adenosine 5'-tetraphosphate (pCH2pppA), alphabeta,gammadelta-bismethylene-adenosine 5'-tetraphosphate (pCH2ppCH2pA), alphabeta, betagamma-bismethylene-adenosine 5'-tetraphosphate (ppCH2pCH2pA) and betagamma, gammadelta-bis(dichloro)methylene-adenosine 5'-tetraphosphate (pCCl2pCCl2ppA), and tested them as potential substrates and/or inhibitors of three specific nucleoside tetraphosphatases. In addition, we employed these p4A analogues with two asymmetrically and one symmetrically acting dinucleoside tetraphosphatases. Of the six analogues, only pppCH2pA is a substrate of the two nucleoside tetraphosphatases (EC 3.6.1.14), from yellow lupin seeds and human placenta, and also of the yeast exopolyphosphatase (EC 3.6.1.11). Surprisingly, none of the six analogues inhibited these p4A-hydrolysing enzymes. By contrast, the analogues strongly inhibit the (asymmetrical) dinucleoside tetraphosphatases (EC 3.6.1.17) from human and the narrow-leafed lupin. ppCH2ppA and pCH2pppA, inhibited the human enzyme with Ki values of 1.6 and 2.3 nm, respectively, and the lupin enzyme with Ki values of 30 and 34 nm, respectively. They are thereby identified as being the strongest inhibitors ever reported for the (asymmetrical) dinucleoside tetraphosphatases. The three analogues having two halo/methylene bridges are much less potent inhibitors for these enzymes. These novel nucleotides should prove valuable tools for further studies on the cellular functions of mono- and dinucleoside polyphosphates and on the enzymes involved in their metabolism.
5'-多磷酸腺苷已在体外作为某些酶促反应的产物被鉴定出来,并且在体内也有发现。尽管这些化合物的生物学作用尚不清楚,但存在高度特异性的水解酶,可将核苷5'-多磷酸降解为相应的核苷5'-三磷酸。理解这些酶的机制和功能的一种方法是使用专门设计的膦酸酯类似物。我们合成了新型核苷酸:α,β-亚甲基-腺苷5'-四磷酸(pppCH2pA)、β,γ-亚甲基-腺苷5'-四磷酸(ppCH2ppA)、γ,δ-亚甲基-腺苷5'-四磷酸(pCH2pppA)、αβ,γδ-双亚甲基-腺苷5'-四磷酸(pCH2ppCH2pA)、αβ,βγ-双亚甲基-腺苷5'-四磷酸(ppCH2pCH2pA)和βγ,γδ-双(二氯)亚甲基-腺苷5'-四磷酸(pCCl2pCCl2ppA),并将它们作为三种特异性核苷四磷酸酶的潜在底物和/或抑制剂进行测试。此外,我们将这些p4A类似物用于两种不对称作用和一种对称作用的二核苷四磷酸酶。在这六种类似物中,只有pppCH2pA是来自黄羽扇豆种子和人胎盘的两种核苷四磷酸酶(EC 3.6.1.14)以及酵母外多磷酸酶(EC 3.6.1.11)的底物。令人惊讶的是,这六种类似物均未抑制这些p4A水解酶。相比之下,这些类似物强烈抑制来自人和窄叶羽扇豆的(不对称)二核苷四磷酸酶(EC 3.6.1.17)。ppCH2ppA和pCH2pppA分别以1.6和2.3 nM的Ki值抑制人酶,以30和34 nM的Ki值抑制羽扇豆酶。因此,它们被确定为有史以来报道的对(不对称)二核苷四磷酸酶最强的抑制剂之一。具有两个卤代/亚甲基桥的三种类似物对这些酶的抑制作用要弱得多。这些新型核苷酸应被证明是进一步研究单核苷和二核苷多磷酸的细胞功能以及参与其代谢的酶的有价值工具。