Suppr超能文献

使用贝叶斯正则化遗传神经网络对钙通道阻滞剂负性肌力活性进行二维自相关建模。

2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks.

作者信息

Caballero Julio, Garriga Miguel, Fernández Michael

机构信息

Molecular Modeling Group, Center for Biotechnological Studies, Faculty of Agronomy, University of Matanzas, 44740 Matanzas, Cuba.

出版信息

Bioorg Med Chem. 2006 May 15;14(10):3330-40. doi: 10.1016/j.bmc.2005.12.048. Epub 2006 Jan 26.

Abstract

Negative inotropic potency of 60 benzothiazepine-like calcium entry blockers (CEBs), Diltiazem analogs, was successfully modeled using Bayesian-regularized genetic neural networks (BRGNNs) and 2D autocorrelation vectors. This approach yielded reliable and robust models whilst by means of a linear genetic algorithm (GA) search routine no multilinear regression model was found describing more than 50% of the training set. On the contrary, the optimum neural network predictor with five inputs described about 84% and 65% variances of 50 randomly selected training and test sets. Autocorrelation vectors in the nonlinear model contained information regarding 2D spatial distributions on the CEB structure of van der Waals volumes, electronegativities, and polarizabilities. However, a sensitivity analysis of the network inputs pointed out to the electronegativity and polarizability 2D topological distributions at substructural fragments of sizes 3 and 4 as the most relevant features governing the nonlinear modeling of the negative inotropic potency.

摘要

利用贝叶斯正则化遗传神经网络(BRGNNs)和二维自相关向量,成功地对60种苯并噻氮䓬类钙通道阻滞剂(CEBs)——地尔硫䓬类似物的负性肌力作用进行了建模。这种方法产生了可靠且稳健的模型,而通过线性遗传算法(GA)搜索程序,未找到能描述超过50%训练集的多元线性回归模型。相反,具有五个输入的最优神经网络预测器描述了50个随机选择的训练集和测试集的约84%和65%的方差。非线性模型中的自相关向量包含了有关范德华体积、电负性和极化率在CEB结构上二维空间分布的信息。然而,对网络输入的敏感性分析指出,大小为3和4的亚结构片段处的电负性和极化率二维拓扑分布是支配负性肌力作用非线性建模的最相关特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验