Caballero Julio, Fernández Michael, González-Nilo Fernando D
Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.
Bioorg Med Chem. 2008 Jun 1;16(11):6103-15. doi: 10.1016/j.bmc.2008.04.048. Epub 2008 Apr 25.
2D autocorrelation, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were undertaken for a series of pyrido[2,3-d]pyrimidin-7-ones to correlate cyclin-dependent kinase (CDK) cyclin D/CDK4 inhibition with 2D and 3D structural properties of 60 known compounds. QSAR models with considerable internal as well as external predictive ability were obtained. The relevant 2D autocorrelation descriptors for modeling CDK4/D inhibitory activity were selected by linear and nonlinear genetic algorithms (GAs) using multiple linear regression (MLR) and Bayesian-regularized genetic neural network (BRGNN) approaches, respectively. Both models showed good predictive statistics; but BRGNN model enables better external predictions. A weight-based input ranking scheme and Kohonen self-organized maps (SOMs) were carried out to interpret the final net weights. The 2D autocorrelation space brings different descriptors for CDK4/D inhibition, and suggests the atomic properties relevant for the inhibitors to interact with CDK4/D active site. CoMFA and CoMSIA analyses were developed with a focus on interpretative ability using coefficient contour maps. CoMSIA produced significantly better results. The results indicate a strong correlation between the inhibitory activity of the modeled compounds and the electrostatic and hydrophobic fields around them.
对一系列吡啶并[2,3 - d]嘧啶 - 7 - 酮进行了二维自相关分析、比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA),以将细胞周期蛋白依赖性激酶(CDK)细胞周期蛋白D/CDK4抑制作用与60种已知化合物的二维和三维结构性质相关联。获得了具有相当内部和外部预测能力的定量构效关系(QSAR)模型。分别使用多元线性回归(MLR)和贝叶斯正则化遗传神经网络(BRGNN)方法,通过线性和非线性遗传算法(GAs)选择用于模拟CDK4/D抑制活性的相关二维自相关描述符。两种模型均显示出良好的预测统计结果;但BRGNN模型具有更好的外部预测能力。采用基于权重的输入排序方案和Kohonen自组织映射(SOMs)来解释最终的网络权重。二维自相关空间为CDK4/D抑制作用带来了不同的描述符,并表明了与抑制剂与CDK4/D活性位点相互作用相关的原子性质。CoMFA和CoMSIA分析侧重于使用系数等高线图的解释能力进行开发。CoMSIA产生了明显更好的结果。结果表明,所模拟化合物的抑制活性与其周围的静电场和疏水场之间存在很强的相关性。