Marshall Byron, Su Hua, McDonald Daniel, Eggers Shauna, Chen Hsinchun
Oregon State University, Corvallis 97331, USA.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):100-8. doi: 10.1109/titb.2005.856857.
Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations.
需要自动工具从生物医学文本中提取信息,以帮助研究人员利用大量且不断增加的生物医学文献。虽然已经创建并测试了多个生物医学关系提取系统,但在有意义地组织提取的关系方面所做的工作很少。组织过程应在不同粒度级别上整合对同一对象的多个引用,将这些引用与其他资源连接起来,并捕获上下文信息。我们提出一种关系聚合的特征分解方法,以支持一个五级聚合框架。我们的BioAggregate标记器使用这种方法来识别提取的关系名称字符串中的关键特征。我们展示了令人鼓舞的特征分配准确性,并报告了提取关系网络中的大量整合情况。