Kárpáti Tamás, Veszprémi Tamás, Thirupathi Natesan, Liu Xiaodong, Wang Zhigang, Ellern Arkady, Nyulászi László, Verkade John G
Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.
J Am Chem Soc. 2006 Feb 8;128(5):1500-12. doi: 10.1021/ja0547533.
The synthesis and the crystal and molecular structure of N(CH(2)CH(2)NMe)(3)P=CH(2) is reported. The P-N(ax) distance is rather long in N(CH(2)CH(2)NMe)(3)P=CH(2). The ylide N(CH(2)CH(2)NMe)(3)P=CH(2) proved to be a stronger proton acceptor than proazaphosphatrane N(CH(2)CH(2)NMe)(3)P, since it was shown to deprotonate N(CH(2)CH(2)NMe)(3)PH(+). The extremely strong basicity of the ylide is in accordance with its low ionization energy (6.3 eV), which is the lowest in the presently investigated series N(CH(2)CH(2)NMe)(3)P=E (E: CH(2), NH, lone pair, O and S), and to the best of our knowledge it is the smallest value observed for a non-conjugated phosphorus ylide. Computations reveal the existence of two bond strech isomers, and the stabilization of the phosphorus centered cation by electron donation from the equatorial and the axial nitrogens. Similar stabilizing effects operate in the case of protonation of E. A fine balance of these different interactions determines the P-N(ax) distance, which is thus very sensitive to the level of the theory applied. According to the quantum mechanical calculations, methyl substitution at the equatorial nitrogens flattens the pyramidality of this atom, increasing its electron donor capability. As a consequence, the PN(ax) distance in the short-transannular bonded protonated systems and the radical cations is longer by about 0.5 A in the N(eq)(Me) than in the N(eq)(H) systems. Accordingly, isodesmic reaction energies show that a stabilization of about 25 and 10 kcal/mol is attributable to the formation of the transannular bond in case of N(eq)(H) and the experimentally realizable N(eq)(Me) species, respectively.
报道了N(CH(2)CH(2)NMe)(3)P=CH(2)的合成及其晶体和分子结构。在N(CH(2)CH(2)NMe)(3)P=CH(2)中,P-N(轴)距离相当长。叶立德N(CH(2)CH(2)NMe)(3)P=CH(2)被证明是比氮杂磷三环N(CH(2)CH(2)NMe)(3)P更强的质子受体,因为它能使N(CH(2)CH(2)NMe)(3)PH(+)去质子化。叶立德极强的碱性与其低电离能(6.3 eV)相符,这是目前研究的N(CH(2)CH(2)NMe)(3)P=E (E: CH(2)、NH、孤对电子、O和S)系列中最低的,据我们所知,这是在非共轭磷叶立德中观察到的最小值。计算结果揭示了两种键长异构体的存在,以及通过来自赤道和轴向氮的电子给予对以磷为中心的阳离子的稳定作用。在E质子化的情况下也存在类似的稳定作用。这些不同相互作用的精细平衡决定了P-N(轴)距离,因此它对所应用理论的水平非常敏感。根据量子力学计算,在赤道氮上进行甲基取代会使该原子的棱锥形变扁平,增加其电子给予能力。结果,在短跨环键合的质子化体系和自由基阳离子中,N(eq)(Me)体系中的PN(轴)距离比N(eq)(H)体系中的长约0.5 Å。相应地,等键反应能表明,对于N(eq)(H)和实验上可实现的N(eq)(Me)物种,分别约有25和10 kcal/mol的稳定化归因于跨环键的形成。