Minnich A, Collet X, Roghani A, Cladaras C, Hamilton R L, Fielding C J, Zannis V I
Department of Medicine, Boston University School of Medicine, Massachusetts 02118.
J Biol Chem. 1992 Aug 15;267(23):16553-60.
We have mutagenized the human apoA-I gene and have generated cell lines which express normal and mutant apoA-I forms. Point mutations were introduced which changed Gln-1, Gln-2 to Arg,Arg, Pro99 to His, and Pro121 to His. In addition, the following amino acid deletions (delta) were generated: delta 113-124, delta 148-186, delta 212-233, and delta 213-243. The apoA-I form isolated from the culture medium of C127 cells was analyzed for its ability to activate lecithin-cholesterol acyltransferase (LCAT) and to bind to phospholipid vesicles and high density lipoprotein (HDL). Compared with the wild type (WT) apoA-I, the relative activation of LCAT achieved by the point mutations Gln-1, Gln-2----Arg,Arg, Pro99----His, and Pro121----His were 106 +/- 7, 92 +/- 6, and 77 +/- 9%, respectively. Kinetic analysis of one mutant apoA-I form showed similar Vmax but a 15-fold increase in the Km of the mutant apoA-I form. Furthermore, the activation achieved by the internal deletion mutants delta 113-124, delta 148-186, delta 212-233, and delta 213-243 was 47 +/- 3, 0.5 +/- 0.4, 28 +/- 4 and 13 +/- 5%, respectively. Mutants deficient in their ability to activate LCAT displayed alterations in liposome and HDL binding, compared with WT as determined by density gradient ultracentrifugation analysis of the culture medium. Thus, the peak recovery (approximately 50%) of apoA-I bound to HDL was at density 1.14 g/ml for the WT apoA-I, at 1.18 g/ml for the mutants delta 113-124 and delta 148-186, and at d greater than 1.21 g/ml for the delta 212-233 and delta 213-243. Electron microscopy of the proteoliposome LCAT substrate generated by WT and mutant apoA-I forms showed that the carboxyl-terminal deletion mutants which displayed aberrant binding to HDL also displayed reduced ability to convert the spherical lecithin-cholesterol vesicles into discs compared with WT. The findings suggest that (a) the importance of the carboxyl terminus of apoA-I for LCAT activation is related to its ability to bind to lipid and/or to form discoidal substrate for LCAT, and (b) the interaction of several domains of apoA-I are required for the activation of LCAT.
我们已对人载脂蛋白A-I基因进行诱变,并生成了表达正常和突变型载脂蛋白A-I形式的细胞系。引入了点突变,将谷氨酰胺-1、谷氨酰胺-2变为精氨酸、精氨酸,将脯氨酸99变为组氨酸,将脯氨酸121变为组氨酸。此外,还产生了以下氨基酸缺失(δ):δ113 - 124、δ148 - 186、δ212 - 233和δ213 - 243。分析了从C127细胞培养基中分离出的载脂蛋白A-I形式激活卵磷脂胆固醇酰基转移酶(LCAT)以及与磷脂囊泡和高密度脂蛋白(HDL)结合的能力。与野生型(WT)载脂蛋白A-I相比,谷氨酰胺-1、谷氨酰胺-2→精氨酸、精氨酸,脯氨酸99→组氨酸,以及脯氨酸121→组氨酸的点突变对LCAT的相对激活率分别为106±7%、92±6%和77±9%。对一种突变型载脂蛋白A-I形式的动力学分析显示其Vmax相似,但突变型载脂蛋白A-I形式的Km增加了15倍。此外,内部缺失突变体δ113 - 124、δ148 - 186、δ212 - 233和δ213 - 243对LCAT的激活率分别为47±3%、0.5±0.4%、28±4%和13±5%。通过对培养基进行密度梯度超速离心分析确定,与WT相比,激活LCAT能力缺陷的突变体在脂质体和HDL结合方面表现出改变。因此,WT载脂蛋白A-I与HDL结合的峰值回收率(约50%)在密度1.14 g/ml处,δ113 - 124和δ148 - 186突变体在1.18 g/ml处,δ212 - 233和δ213 - 243突变体在密度大于1.21 g/ml处。对由WT和突变型载脂蛋白A-I形式产生的蛋白脂质体LCAT底物进行电子显微镜观察表明,与HDL结合异常的羧基末端缺失突变体与WT相比,将球形卵磷脂胆固醇囊泡转化为盘状的能力也降低。这些发现表明:(a)载脂蛋白A-I的羧基末端对LCAT激活的重要性与其结合脂质和/或形成LCAT盘状底物的能力有关;(b)载脂蛋白A-I的多个结构域之间的相互作用是激活LCAT所必需的。