Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089-9011, USA.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S63. doi: 10.1186/1471-2156-6-S1-S63.
There is great interest in the use of computationally intensive methods for fine mapping of marker data. In this paper we develop methods based upon ideas originally proposed 100 years ago in the context of spatial clustering.
We use spatial clustering of haplotypes as a low-dimensional surrogate for the unobserved genealogy underlying a set of genotype data. In doing so we hope to avoid the computational complexity inherent in explicitly modelling details of the ancestry of the sample, while at the same time capturing the key correlations induced by that ancestry at a much lower computational cost.
We benchmark our methods using the simulated Genetic Analysis Workshop 14 data, using 100 replicates of 4 phenotypes to indicate the power of our method. When a functional mutation relating to a trait is actually present, we find evidence for that mutation in 97 out of 100 replicates, on average.
Our results show that our method has the ability to accurately infer the location of functional mutations from unphased genotype data.
人们对使用计算密集型方法对标记数据进行精细映射非常感兴趣。在本文中,我们开发了一些基于 100 年前在空间聚类背景下提出的想法的方法。
我们使用单倍型的空间聚类作为一组基因型数据所隐含的未观察到的基因史的低维替代。通过这样做,我们希望避免在显式地对样本的祖先的细节进行建模时所固有的计算复杂性,同时以更低的计算成本捕捉到由该祖先引起的关键相关性。
我们使用模拟的遗传分析研讨会 14 数据来对我们的方法进行基准测试,使用 4 种表型的 100 个重复来指示我们方法的能力。当实际存在与性状相关的功能突变时,我们发现平均在 100 个重复中的 97 个中都有该突变的证据。
我们的结果表明,我们的方法有能力从非相位基因型数据中准确推断功能突变的位置。