Suppr超能文献

基于混合参数/非参数模型的生物过程批次间迭代优化。

Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

作者信息

Teixeira Ana P, Clemente João J, Cunha António E, Carrondo Manuel J T, Oliveira Rui

机构信息

REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal.

出版信息

Biotechnol Prog. 2006 Jan-Feb;22(1):247-58. doi: 10.1021/bp0502328.

Abstract

This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

摘要

本文提出了一种用于生物过程迭代批间动态优化的新方法。通过结合参数和非参数结构的混合灰箱模型建立过程性能与控制输入之间的关系。生物反应器动力学由物料平衡方程定义,而细胞群体子系统由非参数和参数模型的可调混合表示。因此,无需关于生物系统的详细机理知识就可以进行优化。在优化过程中,使用聚类技术来监督非参数子系统的可靠性。每当非参数输出不可靠时,目标函数就会受到惩罚。该技术通过三个模拟案例研究进行了评估。总体结果表明,经过少量批次后即可实现向最优过程性能的收敛。模型不可靠性风险约束以及采样调度对于最小化达到给定过程性能所需的实验工作量至关重要。一般来说,可以得出结论,所提出的方法将混合参数/非参数建模技术的应用扩展到了具有更高优化潜力的“更新”过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验