Suppr超能文献

用于精确计算溶液和酶中反应能量学的量子力学/分子力学最小自由能路径:在平均力势面上的顺序采样与优化

Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.

作者信息

Hu Hao, Lu Zhenyu, Parks Jerry M, Burger Steven K, Yang Weitao

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Chem Phys. 2008 Jan 21;128(3):034105. doi: 10.1063/1.2816557.

Abstract

To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl-+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.

摘要

为了准确确定酶促反应和溶液相反应的反应路径及其能量学,我们提出了一种顺序采样和优化方法,该方法极大地提高了从头算量子力学/分子力学最小自由能路径(QM/MM-MFEP)方法的效率。在QM/MM-MFEP方法中,复杂反应系统的热力学由具有少量自由度的量子力学(QM)子系统的平均力势(PMF)表面来描述,有点类似于描述气相中的反应过程。QM/MM-MFEP方法的主要计算成本来自于计算QM PMF及其梯度所需的分子力学(MM)子系统构象的统计采样。在我们新的顺序采样和优化方法中,我们的目标是通过首先进行MM相空间采样,然后在固定大小的MM构象系综中优化QM子系统,来减少MM采样量,同时仍保持结果的准确性。然后使用得到的QM优化结构来获得MM子系统更精确的采样。这个顺序MM采样和QM优化的过程会反复进行,直到收敛。使用固定大小、有限的MM构象系综能够在系综内精确评估QM平均力势及其梯度,从而规避了与统计平均相关的挑战,并显著加快了优化过程的收敛速度。为了进一步提高QM/MM-MFEP方法的准确性,采用了Lu和Yang [Z. Lu和W. Yang, J. Chem. Phys. 121, 89 (2004)] 开发并验证的反应路径势方法,以一种近似但准确的方式描述QM/MM静电相互作用,其计算成本与经典MM模拟相当。该新方法成功应用于两个示例反应过程,即溶液中Cl- + CH3Cl的经典SN2反应以及由酶4-草酰巴豆酸互变异构酶催化的反应的第二步质子转移。用这种新的顺序采样和优化方法应用于QM/MM-MFEP方法计算得到的活化自由能与其他模拟方法(如采用直接QM/MM动力学采样的伞形采样技术)的结果吻合良好,证明了迭代QM/MM-MFEP方法的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验