El Abdllaoui Abderrahim, Auger Pierre, Kooi Bob W, Bravo de la Parra Rafael, Mchich Rachid
IRD, Institut de Recherche pour le Développement, U. R. GEODES, Centre de Recherche d'Ile de France, 32 Avenue Henri Varagnat, 93143 Bondy cedex, France.
Math Biosci. 2007 Nov;210(1):335-54. doi: 10.1016/j.mbs.2007.03.002. Epub 2007 Mar 18.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.
我们考虑一个双斑块环境中的捕食者 - 猎物模型,并假设斑块间的迁移速度快于猎物增长、捕食者死亡以及捕食者 - 猎物相互作用。猎物(相应地,捕食者)的迁移率被认为取决于捕食者(相应地,猎物)的密度。猎物以与当地捕食者密度成正比的迁移率离开一个斑块。捕食者以与当地猎物种群密度成反比的迁移率离开一个斑块。利用这两个不同的时间尺度,我们使用聚合方法来获得一个简化(聚合)模型,该模型用于控制猎物和捕食者的总密度。首先,我们表明,对于一大类依赖于密度的捕食者和猎物迁移规则,存在一个唯一且稳定的迁移平衡。其次,进行了数值分岔分析。我们表明,对于两个时间尺度之比的合理值,从完整模型和聚合模型得到的分岔图彼此一致,迁移时间尺度快,局部种群统计学时间尺度慢。我们的结果表明,在某些特定条件下,迁移的密度依赖性可以产生一个极限环。在迁移参数的某些范围内还观察到一个余维二的鲍廷分岔点,这意味着平衡和极限环的双稳性是可能的。