Suppr超能文献

用于消除与质谱分析和无标记蛋白质组学相关的系统偏差的归一化方法。

Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics.

作者信息

Callister Stephen J, Barry Richard C, Adkins Joshua N, Johnson Ethan T, Qian Wei-Jun, Webb-Robertson Bobbie-Jo M, Smith Richard D, Lipton Mary S

机构信息

Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.

出版信息

J Proteome Res. 2006 Feb;5(2):277-86. doi: 10.1021/pr050300l.

Abstract

Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias to some degree, assigned ranks among the techniques revealed that for most LC-FTICR-MS analyses linear regression normalization ranked either first or second. However, the lack of a definitive trend among the techniques suggested the need for additional investigation into adapting normalization approaches for label-free proteomics. Nevertheless, this study serves as an important step for evaluating approaches that address systematic biases related to relative quantification and label-free proteomics.

摘要

研究了中心趋势、线性回归、局部加权回归和分位数技术,用于对通过高通量液相色谱-傅里叶变换离子回旋共振质谱(LC-FTICR MS)获得的肽丰度测量值进行归一化。从三个样本集获得了肽的任意丰度,包括一个标准蛋白质样本、两个取自不同生长阶段的耐辐射球菌样本,以及两个来自对照小鼠和甲基苯丙胺应激小鼠(C57BL/6品系)的小鼠纹状体样本。通过在归一化之前和之后估计无关变异,在有无生物变异的情况下对所选的归一化技术进行了评估。在归一化之前,观察到每个样本集的重复运行在统计学上是不同的,而在归一化之后,重复运行在统计学上不再不同。尽管所有技术都在一定程度上降低了系统偏差,但各技术之间的排名显示,对于大多数LC-FTICR-MS分析,线性回归归一化排名第一或第二。然而,这些技术之间缺乏明确的趋势表明,需要对适用于无标记蛋白质组学的归一化方法进行进一步研究。尽管如此,本研究是评估解决与相对定量和无标记蛋白质组学相关的系统偏差的方法的重要一步。

相似文献

3
Improved normalization of systematic biases affecting ion current measurements in label-free proteomics data.
Mol Cell Proteomics. 2014 May;13(5):1341-51. doi: 10.1074/mcp.M113.030593. Epub 2014 Feb 21.
7
FTICR mass spectrometry in proteomics.
Curr Opin Mol Ther. 2003 Jun;5(3):310-4.
8
Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer.
Methods Mol Biol. 2009;492:215-31. doi: 10.1007/978-1-59745-493-3_12.
9
Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides.
Mol Cell Proteomics. 2009 Oct;8(10):2285-95. doi: 10.1074/mcp.M800514-MCP200. Epub 2009 Jul 12.
10
Proteomics by FTICR mass spectrometry: top down and bottom up.
Mass Spectrom Rev. 2005 Mar-Apr;24(2):168-200. doi: 10.1002/mas.20015.

引用本文的文献

1
Control of Golgi- V-ATPase through Sac1-dependent co-regulation of PI(4)P and cholesterol.
Nat Commun. 2025 Aug 21;16(1):7808. doi: 10.1038/s41467-025-63125-7.
5
Multiomics Profiling of Extracellular Vesicles Supports Their Involvement in Endothelial Senescence-Associated Vascular Dysfunction.
J Extracell Biol. 2025 Jul 30;4(8):e70078. doi: 10.1002/jex2.70078. eCollection 2025 Aug.
6
Evaluation of normalization strategies for mass spectrometry-based multi-omics datasets.
Metabolomics. 2025 Jul 1;21(4):98. doi: 10.1007/s11306-025-02297-1.
8
Enhancing titers of therapeutic lentiviral vectors using PKC agonists.
Mol Ther Methods Clin Dev. 2025 May 7;33(2):101484. doi: 10.1016/j.omtm.2025.101484. eCollection 2025 Jun 12.

本文引用的文献

3
Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry.
J Am Soc Mass Spectrom. 2004 Oct;15(10):1416-1423. doi: 10.1016/j.jasms.2004.04.034.
8
Normalization of cDNA microarray data.
Methods. 2003 Dec;31(4):265-73. doi: 10.1016/s1046-2023(03)00155-5.
9
Evaluation of normalization methods for microarray data.
BMC Bioinformatics. 2003 Sep 2;4:33. doi: 10.1186/1471-2105-4-33.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验