Farah G, Hewson D J, Duchêne J
Institut Charles Delaunay, FRE CNRS 2848, Université de Technologie de Troyes, 12, rue Marie Curie, BP 2060, F-10010 Troyes cedex, France.
J Electromyogr Kinesiol. 2006 Dec;16(6):669-76. doi: 10.1016/j.jelekin.2005.11.010. Epub 2006 Feb 2.
The aim of this paper is to develop a method to extract relevant activities from surface electromyography (SEMG) recordings under difficult experimental conditions with a poor signal to noise ratio. High amplitude artifacts, the QRS complex, low frequency noise and white noise significantly alter EMG characteristics. The CEM algorithm proved to be useful for segmentation of SEMG signals into high amplitude artifacts (HAA), phasic activity (PA) and background postural activity (BA) classes. This segmentation was performed on signal energy, with classes belonging to a chi(2) distribution. Ninety-five percent of HAA events and 96.25% of BA events were detected, and the remaining noise was then identified using AR modeling, a classification based upon the position of the coordinates of the pole of highest module. This method eliminated 91.5% of noise and misclassified only 3.3% of EMG events when applied to SEMG recorded on passengers subjected to lateral accelerations.
本文的目的是开发一种方法,以便在具有较差信噪比的困难实验条件下,从表面肌电图(SEMG)记录中提取相关活动。高幅度伪迹、QRS复合波、低频噪声和白噪声会显著改变肌电图特征。CEM算法被证明对于将SEMG信号分割为高幅度伪迹(HAA)、相位活动(PA)和背景姿势活动(BA)类别很有用。这种分割是在信号能量上进行的,类别属于卡方分布。检测到了95%的HAA事件和96.25%的BA事件,然后使用AR建模识别剩余噪声,AR建模是基于最高模量极点坐标位置的一种分类方法。当应用于记录受横向加速度影响乘客的SEMG时,该方法消除了91.5%的噪声,并且仅将3.3%的肌电图事件误分类。