Wan Xiaohong, Iwata Kazuki, Riera Jorge, Ozaki Torh, Kitamura Masaharu, Kawashima Ryuta
Advanced Science and Technology of Materials NICHe, Tohoku University, Aobaku, Sendai 980-8579, Japan.
Clin Neurophysiol. 2006 Mar;117(3):668-80. doi: 10.1016/j.clinph.2005.12.015. Epub 2006 Feb 2.
We present a new method of effectively removing the ballistocardiogram artifacts (BAs) of electroencephalography (EEG), recorded inside a 1.5 T static magnetic field scanner with no fMRI scanning, which conserves the time and frequency features of event-related EEG activity.
The BAs are approximated as deterministically chaotic dynamics. A Wavelet-based nonlinear noise reduction (WNNR) method consisting of: (a) wavelet transformation, (b) nonlinear noise reduction and (c) spatial average subtraction, is developed to effectively reduce the BAs so that the residual artifacts are smaller than the EEG signals.
The effectiveness of the WNNR method to remove the BAs with conservation of the temporal EEG signals is evaluated by simulations and experiments inside a 1.5 T static magnetic field, with the visual evoked EEG dynamics. The WNNR method is also demonstrated to effectively retrieve alpha waves while the subjects' eyes are closed.
The WNNR method has the abilities to effectively remove the BAs and conserve the time-frequency features of EEG activity.
The WNNR method provides us a significant technique to obtain clean temporal EEG signals during recording with MRI, especially for the event-related EEG dynamics. Notably, it might work effectively at higher field strengths as well. Moreover, it can be also used to process many other biological data contaminated by the cardiac pulses.
我们提出一种新方法,可有效去除在1.5T静磁场扫描仪内记录的、未进行功能磁共振成像扫描的脑电图(EEG)中的心冲击图伪影(BAs),该方法能保留与事件相关的EEG活动的时间和频率特征。
将BAs近似为确定性混沌动力学。开发了一种基于小波的非线性降噪(WNNR)方法,该方法包括:(a)小波变换,(b)非线性降噪和(c)空间平均减法,以有效减少BAs,使残留伪影小于EEG信号。
通过在1.5T静磁场内进行模拟和实验,并结合视觉诱发电位EEG动力学,评估了WNNR方法在去除BAs并保留EEG信号时间特征方面的有效性。还证明了WNNR方法在受试者闭眼时能有效恢复阿尔法波。
WNNR方法具有有效去除BAs并保留EEG活动时频特征的能力。
WNNR方法为我们提供了一种重要技术,可在MRI记录过程中获取干净的EEG时间信号,特别是对于与事件相关的EEG动力学。值得注意的是,它在更高场强下可能也能有效工作。此外,它还可用于处理许多其他受心脏脉冲污染的生物数据。