Moustapha Moustapha E, Ehrhardt Gary J, Smith Charles J, Szajek Lawrence P, Eckelman William C, Jurisson Silvia S
Department of Chemistry, University of Missouri-Columbia, 65211, USA.
Nucl Med Biol. 2006 Jan;33(1):81-9. doi: 10.1016/j.nucmedbio.2005.09.006.
The radioisotopes (186)Re and (188)Re have been extensively investigated for various forms of radiotherapy due to their useful and high-abundance beta particle emissions, low-abundance and imageable gamma-rays, and chemical resemblance to technetium. In addition, (188)Re is available in no-carrier-added (NCA) form from long lived W-188 generators, whereas (186)Re can be produced in large quantities from reactors, although not in NCA form. However, NCA (186)Re can be produced on a cyclotron by a (p,n) reaction on (186)W. The purpose of this study was to compare labeling of the peptide bombesin with these three forms of rhenium radioisotopes. Cyclotron-produced NCA (186)Re was separated radiochemically from enriched (186)W (96.9%) targets using high-purity methyl ethyl ketone (MEK). The resulting (186)Re-MEK was then loaded onto a small alumina column to separate the resulting NCA (186)Re from any remaining (186)W. The experimental levels of impurities associated with (186)Re at the end of the separation process were found to be 5.7 x 10(-6) Ci of (182)Re (0.57%, t(1/2) = 12.7 h) and 1.283 x 10(-5) Ci of (182m)Re (1.28%, t(1/2) = 2.67 days). The radionuclidic purity of the separated (186)Re was found to be 99.6%, whereas the chemical identity was determined by reversed phase high-performance liquid chromatography (RP-HPLC) to be perrhenate ((186)ReO(4)(-)). Generator-produced (188)ReO(4)(-) from a (188)W/(188)Re generator (Oak Ridge National Laboratory) and CA (186)ReO(4)(-) produced from a (185)Re(n,gamma)(186)Re reaction at the University of Missouri Research Reactor (MURR) were used for comparison with the NCA (186)Re in subsequent studies. N(3)S-5-Ava-BBN(7-14)NH(2) conjugates provide flexibility for designing (186,188)Re-labeled conjugates that retain high in vitro and in vivo specificity targeting of GRP receptor-expressing cells. This study showed that the N(3)S-5-Ava-BBN(7-14)NH(2) could be labeled with (186,188)Re following the preconjugation, postmetallation approach. The (186,188)Re(V)O-N(3)S-5-Ava-BBN(7-14)NH(2) complexes were found to form stable complexes following the reduction of perrhenate (Re(VII)O(4)(-)) with stannous chloride at room temperature, as verified by HPLC and stability studies. The radiolabeling yield was found to be >90%. The HPLC chromatograms of (186,188)Re-N(3)S-5-Ava-BBN(7-14)NH(2) complexes revealed two peaks for each conjugate, reflecting the presence of syn- and anti-isomers, which were resolvable by HPLC but re-isomerized on separation. The biodistribution studies showed that the compounds were excreted through the renal and hepatobiliary systems and demonstrated receptor-specific uptake with an average pancreas accumulation of 8.15% ID/g at 1 h postinjection. Administration of cold BBN effectively blocked pancreatic uptake and further reflects the high specificity this conjugate has for the GRP receptors. At low levels of radioactivity, radiolysis effects were not observed. Scale-up may or may not elicit this effect, particularly for the higher energy beta emitter (188)Re. The biodistribution studies demonstrated that the CA and NCA (186,188)Re conjugates behaved similarly, raising the question of whether NCA (186,188)Re is necessary for specific tumor receptor targeting.
放射性同位素铼-186((^{186}Re))和铼-188((^{188}Re))因其有用且丰度高的β粒子发射、低丰度且可成像的γ射线以及与锝的化学相似性,已被广泛研究用于各种形式的放射治疗。此外,铼-188可从长寿命的钨-188发生器以无载体添加(NCA)形式获得,而铼-186虽可从反应堆大量生产,但不是NCA形式。不过,无载体添加的铼-186可通过回旋加速器上的钨-186((^{186}W))发生(p,n)反应来制备。本研究的目的是比较这三种形式的铼放射性同位素对肽胃泌素释放肽(蛙皮素)的标记情况。通过回旋加速器产生的无载体添加铼-186,利用高纯度甲乙酮(MEK)从富集的钨-186(96.9%)靶材中进行放射化学分离。然后将得到的铼-186 -甲乙酮加载到一个小的氧化铝柱上,以从任何残留的钨-186中分离出所得的无载体添加铼-186。在分离过程结束时,发现与铼-186相关的杂质实验水平为0.57%(半衰期(t_{1/2})=12.7小时)的铼-182为(5.7×10^{-6})居里,以及1.28%(半衰期(t_{1/2})=2.67天)的铼-182m为(1.283×10^{-5})居里。分离得到的铼-186的放射性核素纯度为99.6%,而其化学性质通过反相高效液相色谱(RP - HPLC)确定为高铼酸盐((^{186}ReO_{4}^{-}))。来自钨-188/铼-188发生器(橡树岭国家实验室)产生的发生器生产的高铼酸盐铼-188((^{188}ReO_{4}^{-}))以及在密苏里大学研究反应堆(MURR)通过铼-185((^{185}Re))(n,γ)铼-186反应产生的常规添加铼-186((^{186}ReO_{4}^{-})),在后续研究中用于与无载体添加铼-186进行比较。N(3)S - 5 - Ava - BBN(7 - 14)NH₂缀合物为设计保留对表达GRP受体细胞具有高体外和体内特异性靶向性的铼-186、铼-188标记缀合物提供了灵活性。本研究表明,N(3)S - 5 - Ava - BBN(7 - 14)NH₂可采用预共轭、金属化后方法用铼-186、铼-188进行标记。如通过HPLC和稳定性研究验证,在室温下用氯化亚锡还原高铼酸盐((Re(VII)O_{4}^{-}))后,铼-186、铼-188(V)O - N(3)S - 5 - Ava - BBN(7 - 14)NH₂络合物被发现形成稳定的络合物。放射性标记产率大于90%。铼-186、铼-188 - N(3)S - 5 - Ava - BBN(7 - 14)NH₂络合物的HPLC色谱图显示每个缀合物有两个峰,反映了顺式和反式异构体的存在,它们可通过HPLC分离,但在分离时会重新异构化。生物分布研究表明,这些化合物通过肾和肝胆系统排泄,并显示出受体特异性摄取,注射后1小时胰腺平均蓄积量为8.15% ID/g。给予未标记的胃泌素释放肽有效地阻断了胰腺摄取,进一步反映了该缀合物对GRP受体具有高特异性。在低放射性水平下,未观察到辐射分解效应。放大生产可能会或可能不会引发这种效应,特别是对于较高能量的β发射体铼-188。生物分布研究表明,常规添加铼-186、铼-188和无载体添加铼-186、铼-188缀合物的行为相似,这就提出了一个问题,即无载体添加铼-186、铼-188对于特定肿瘤受体靶向是否必要。