Wheeler Steven E, Yamaguchi Yukio, Schaefer Henry F
Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA.
J Chem Phys. 2006 Jan 28;124(4):044322. doi: 10.1063/1.2150819.
Spurred by the apparent conflict between ab initio predictions and infrared spectroscopic evidence regarding the relative stability of isomers of protonated carbonyl sulfide, key stationary points on the isomerization surface of HOCS(+) have been examined via systematic extrapolations of ab initio energies. Electron correlation has been accounted for using second-order Møller-Plesset perturbation theory and coupled cluster theory through triple excitations [CCSD, CCSD(T), and CCSDT] in conjunction with the correlation consistent hierarchy of basis sets, cc-pVXZ (X=D,T,Q,5,6). HSCO(+) is predicted to lie lower in energy than HOCS(+) by 4.86 kcal mol(-1), computed using the focal point extrapolation scheme of Allen and co-workers [J. Chem. Phys. 99, 4638 (1993)] with corrections for anharmonic zero-point vibrational energy, core correlation, non-Born-Oppenheimer, and scalar relativistic effects. A transition state has been located, constituting the barrier to isomerization of HSCO(+) to HOCS(+), lying 68.9 kcal mol(-1) higher in energy than HSCO(+). This is well above predicted exothermicity [DeltaH(r) (o)(0 K)=48.1 kcal mol(-1), cc-pVQZ CCSD(T)] for the reaction considered in the experiments (HSCO(+)+H(2)-->OCS+H(3) (+)). Though proton tunneling will lead to a lower effective barrier, this prediction is consistent with the lack of HSCO(+) in electrical discharges in H(2)OCS, since the relative populations of HOCS(+) and HSCO(+) will depend on the experimental details of the protonation route rather than the relative thermodynamic stability of the isomers. Anharmonic vibrational frequencies and vibrationally corrected rotational constants from cc-pVTZ CCSD(T) cubic and quartic force constants are provided, to aid in the spectroscopic observation of the energetically favorable but apparently elusive HSCO(+) isomer.
关于质子化羰基硫异构体的相对稳定性,从头算预测与红外光谱证据之间存在明显冲突,这促使人们通过对从头算能量进行系统外推,研究了HOCS(+)异构化表面上的关键驻点。使用二阶Møller-Plesset微扰理论和包含三重激发的耦合簇理论[CCSD、CCSD(T)和CCSDT],结合相关一致基组层次cc-pVXZ(X = D、T、Q、5、6)来考虑电子相关。使用Allen及其同事的焦点外推方案[《化学物理杂志》99, 4638 (1993)],并对非谐零点振动能、核心相关、非玻恩-奥本海默和标量相对论效应进行校正后计算得出,HSCO(+)的能量预计比HOCS(+)低4.86 kcal mol(-1)。已找到一个过渡态,它构成了HSCO(+)异构化为HOCS(+)的势垒,其能量比HSCO(+)高68.9 kcal mol(-1)。这远高于实验中所考虑反应(HSCO(+) + H(2) --> OCS + H(3) (+))预测的放热值[ΔH(r) (o)(0 K) = 48.1 kcal mol(-1),cc-pVQZ CCSD(T)]。尽管质子隧穿会导致有效势垒降低,但这一预测与在H(2)OCS放电中缺乏HSCO(+)的情况一致,因为HOCS(+)和HSCO(+)的相对丰度将取决于质子化途径的实验细节,而非异构体的相对热力学稳定性。提供了来自cc-pVTZ CCSD(T)立方和四次力常数的非谐振动频率和振动校正转动常数,以帮助对能量上有利但明显难以捉摸的HSCO(+)异构体进行光谱观测。