Schonhoff Christopher M, Matsuoka Masaaki, Tummala Hemachand, Johnson Michael A, Estevéz Alvaro G, Wu Rui, Kamaid Andrés, Ricart Karina C, Hashimoto Yuichi, Gaston Benjamin, Macdonald Timothy L, Xu Zuoshang, Mannick Joan B
Department of Medicine and Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2404-9. doi: 10.1073/pnas.0507243103. Epub 2006 Feb 6.
Recent data suggest that either excessive or deficient levels of protein S-nitrosylation may contribute to disease. Disruption of S-nitrosothiol (SNO) homeostasis may result not only from altered nitric oxide (NO) synthase activity but also from alterations in the activity of denitrosylases that remove NO groups. A subset of patients with familial amyotrophic lateral sclerosis (ALS) have mutations in superoxide dismutase 1 (SOD1) that increase the denitrosylase activity of SOD1. Here, we show that the increased denitrosylase activity of SOD1 mutants leads to an aberrant decrease in intracellular protein and peptide S-nitrosylation in cell and animal models of ALS. Deficient S-nitrosylation is particularly prominent in the mitochondria of cells expressing SOD1 mutants. Our results suggest that SNO depletion disrupts the function and/or subcellular localization of proteins that are regulated by S-nitrosylation such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and thereby contributes to ALS pathogenesis. Repletion of intracellular SNO levels with SNO donor compounds rescues cells from mutant SOD1-induced death. These results suggest that aberrant depletion of intracellular SNOs contributes to motor neuron death in ALS, and raises the possibility that deficient S-nitrosylation is a general mechanism of disease pathogenesis. SNO donor compounds may provide new therapeutic options for diseases such as ALS that are associated with deficient S-nitrosylation.
最近的数据表明,蛋白质S-亚硝基化水平过高或过低都可能导致疾病。S-亚硝基硫醇(SNO)稳态的破坏不仅可能源于一氧化氮(NO)合酶活性的改变,还可能源于去除NO基团的去亚硝基化酶活性的改变。一部分家族性肌萎缩侧索硬化症(ALS)患者的超氧化物歧化酶1(SOD1)发生突变,从而增加了SOD1的去亚硝基化酶活性。在此,我们表明,在ALS的细胞和动物模型中,SOD1突变体增加的去亚硝基化酶活性导致细胞内蛋白质和肽的S-亚硝基化异常降低。S-亚硝基化不足在表达SOD1突变体的细胞线粒体中尤为突出。我们的结果表明,SNO耗竭会破坏受S-亚硝基化调节的蛋白质(如甘油醛-3-磷酸脱氢酶(GAPDH))的功能和/或亚细胞定位,从而导致ALS发病机制。用SNO供体化合物补充细胞内SNO水平可使细胞从突变SOD1诱导的死亡中获救。这些结果表明,细胞内SNOs的异常耗竭导致ALS中的运动神经元死亡,并增加了S-亚硝基化不足是疾病发病机制的一般机制的可能性。SNO供体化合物可能为与S-亚硝基化不足相关的疾病(如ALS)提供新的治疗选择。