Yang Yi, Loscalzo Joseph
Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):117-22. doi: 10.1073/pnas.0405989102. Epub 2004 Dec 23.
Protein S-nitrosation represents a recently described form of post-translational modification that is rapid and reversible. However, the analysis of protein S-nitrosation in situ has been difficult because of the absence of specific probes and the instability of cellular protein S-nitrosothiols. We developed a rapid and specific method for detecting endothelial S-nitrosoproteins patterned after the biotin switch method that involves thiol alkylation followed by reductive generation of thiols from S-nitrosothiols, which are then labeled with either a biotin- or Texas red-derivative of methanethiosulfonate. When we used this methodology, we found that S-nitrosated proteins can form within endothelial cells from an exogenous S-nitrosothiol donor or from endogenous production of NO by endothelial NO synthase. When we used confocal microscopy, we found that these S-nitrosoproteins exist mainly in the mitochondria and peri-mitochondrial compartment, and that their half-life is approximately 1 h. Cellular S-nitrosated protein abundance changed as expected, with changes in activity of NO synthase, and with impairment of mitochondrial function and scavenging of peroxynitrite. We used a proteomic approach involving two-dimensional gel electrophoresis and mass spectrometry, and found that a limited number of S-nitrosoproteins exist in endothelial cells (S-nitrosoproteome) and identified GAPDH, vimentin, beta-galactosidase, peroxiredoxin 1, beta-actin, and ubiquitin-conjugating enzyme E2 among them. The most abundant S-nitrosated protein in the resting endothelial cell is GAPDH, suggesting a regulatory function for NO in glycolysis. These data offer methods and insights into identifying the protein targets of S-nitrosation reactions and their potential role in cell function and phenotype.
蛋白质S-亚硝基化是一种最近被描述的翻译后修饰形式,它快速且可逆。然而,由于缺乏特异性探针以及细胞内蛋白质S-亚硝基硫醇的不稳定性,原位分析蛋白质S-亚硝基化一直很困难。我们开发了一种快速且特异的方法来检测内皮细胞中的S-亚硝基化蛋白质,该方法以生物素转换法为模板,包括硫醇烷基化,随后从S-亚硝基硫醇还原生成硫醇,然后用甲硫基磺酸酯的生物素或德克萨斯红衍生物进行标记。当我们使用这种方法时,我们发现S-亚硝基化蛋白质可以在内皮细胞中由外源性S-亚硝基硫醇供体或内皮型一氧化氮合酶内源性产生的一氧化氮形成。当我们使用共聚焦显微镜时,我们发现这些S-亚硝基化蛋白质主要存在于线粒体和线粒体周围区域,并且它们的半衰期约为1小时。细胞内S-亚硝基化蛋白质的丰度如预期的那样发生变化,随着一氧化氮合酶活性的变化、线粒体功能的受损以及过氧亚硝酸根的清除而变化。我们使用了一种涉及二维凝胶电泳和质谱的蛋白质组学方法,发现内皮细胞中存在有限数量的S-亚硝基化蛋白质(S-亚硝基蛋白质组),并在其中鉴定出甘油醛-3-磷酸脱氢酶、波形蛋白、β-半乳糖苷酶、过氧化物酶1、β-肌动蛋白和泛素结合酶E2。静息内皮细胞中最丰富的S-亚硝基化蛋白质是甘油醛-3-磷酸脱氢酶,这表明一氧化氮在糖酵解中具有调节功能。这些数据为鉴定S-亚硝基化反应的蛋白质靶点及其在细胞功能和表型中的潜在作用提供了方法和见解。