Wang Liancheng, Li Michael Y
Department of Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA.
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
Math Biosci. 2006 Mar;200(1):44-57. doi: 10.1016/j.mbs.2005.12.026. Epub 2006 Feb 8.
A mathematical model that describes HIV infection of CD4(+) T cells is analyzed. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number R(0) < or = 1, the HIV infection is cleared from the T-cell population; if R(0) > 1, the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium P* can be unstable and periodic solutions may exist. We establish parameter regions for which P* is globally stable.
分析了一个描述CD4(+) T细胞HIV感染的数学模型。严格建立了该模型的全局动力学。我们证明,如果基本再生数R(0) ≤ 1,HIV感染将从T细胞群体中清除;如果R(0) > 1,HIV感染将持续存在。对于一组开放的参数值,慢性感染平衡点P可能不稳定且可能存在周期解。我们建立了P全局稳定的参数区域。