Suppr超能文献

[3H]ohmefentanyl preferentially binds to mu-opioid receptors but also labels sigma-sites in rat brain sections.

作者信息

Wang H, Pélaprat D, Roques B P, Vanhove A, Chi Z Q, Rostène W

机构信息

INSERM U.339, Hôpital Saint-Antoine, Paris, France.

出版信息

Eur J Pharmacol. 1991 Feb 14;193(3):341-50. doi: 10.1016/0014-2999(91)90149-k.

Abstract

Ohmefentanyl has been shown to be 6300 times more potent than morphine for analgesia. The receptor binding characteristics and distribution of [3H]ohmefentanyl in rat brain sections are presented. [3H]Ohmefentanyl bound with high affinity to opioid receptors in a saturable manner (Kd = 0.95 +/- 0.08 nM, Bmax = 337 +/- 14 fmol/mg protein). We used various currently available specific mu, delta and kappa ligands to show that [3H]ohmefentanyl has a high selectivity for the mu opioid receptor. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO) was unable to completely inhibit [3H]ohmefentanyl specific binding, while complete inhibition was observed with fentanyl derivatives and the benzomorphan derivative, ethylketocyclazocine. This remaining 20% DAGO-inaccessible [3H]ohmefentanyl specific binding did not correspond to either mu1, delta or kappa sites. Haloperidol and 1,3-di-o-tolylguanidine were able to inhibit DAGO-inaccessible [3H]ohmefentanyl specific binding, suggesting that [3H]ohmefentanyl might also bind to haloperidol-sensitive sigma sites. The topographical distribution of [3H]ohmefentanyl found by autoradiography was generally similar to that of [3H]DAGO. However, in agreement with the biochemical results, quantitative analysis revealed additional sites in several rat brain regions, the greatest discrepancies with [3H]DAGO distribution being observed in cerebellum, central grey, hippocampal formation and locus coeruleus. Finally, our results suggest that this capacity of binding to both mu and sigma sites is shared by various fentanyl derivatives.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验