Suppr超能文献

在贝叶斯框架下使用概率约束估计疾病患病率。

Estimating disease prevalence in a Bayesian framework using probabilistic constraints.

作者信息

Berkvens Dirk, Speybroeck Niko, Praet Nicolas, Adel Amel, Lesaffre Emmanuel

机构信息

Department of Animal Health, Institute of Tropical Medicine, Antwerp, Belgium.

出版信息

Epidemiology. 2006 Mar;17(2):145-53. doi: 10.1097/01.ede.0000198422.64801.8d.

Abstract

Studies sometimes estimate the prevalence of a disease from the results of one or more diagnostic tests that are applied to individuals of unknown disease status. This approach invariably means that, in the absence of a gold standard and without external constraints, more parameters must be estimated than the data permit. Two assumptions are regularly made in the literature, namely that the test characteristics (sensitivity and specificity) are constant over populations and the tests are conditionally independent given the true disease status. These assumptions have been criticized recently as being unrealistic. Nevertheless, to estimate the prevalence, some restrictions on the parameter estimates need to be imposed. We consider 2 types of restrictions: deterministic and probabilistic restrictions, the latter arising in a Bayesian framework when expert knowledge is available. Furthermore, we consider 2 possible parameterizations allowing incorporation of these restrictions. The first is an extension of the approach of Gardner et al and Dendukuri and Joseph to more than 2 diagnostic tests and assuming conditional dependence. We argue that this system of equations is difficult to combine with expert opinions. The second approach, based on conditional probabilities, looks more promising, and we develop this approach in a Bayesian context. To evaluate the combination of data with the (deterministic and probabilistic) constraints, we apply the recently developed Deviance Information Criterion and effective number of parameters estimated (pD) together with an appropriate Bayesian P value. We illustrate our approach using data collected in a study on the prevalence of porcine cysticercosis with verification from external data.

摘要

研究有时会根据一项或多项应用于疾病状态未知个体的诊断测试结果来估计疾病的患病率。这种方法总是意味着,在没有金标准且没有外部约束的情况下,需要估计的参数比数据所能允许的更多。文献中经常做出两个假设,即测试特征(敏感性和特异性)在不同人群中是恒定的,并且在给定真实疾病状态的情况下测试是条件独立的。最近,这些假设被批评为不现实。然而,为了估计患病率,需要对参数估计施加一些限制。我们考虑两种类型的限制:确定性限制和概率性限制,后者出现在有专家知识可用的贝叶斯框架中。此外,我们考虑两种可能的参数化方法,以便纳入这些限制。第一种是将Gardner等人以及Dendukuri和Joseph的方法扩展到超过两项诊断测试,并假设条件依赖性。我们认为这个方程组很难与专家意见相结合。第二种方法基于条件概率,看起来更有前景,我们在贝叶斯背景下开发了这种方法。为了评估数据与(确定性和概率性)约束的组合,我们应用最近开发的偏差信息准则和估计的有效参数数量(pD)以及适当的贝叶斯P值。我们使用在一项关于猪囊尾蚴病患病率的研究中收集的数据,并通过外部数据进行验证来说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验