Duclohier Hervé
Institut de Physiologie et de Biologie Cellulaires (Pôle Biologie Santé), UMR 6187 CNRS-Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers, France.
Eur Biophys J. 2006 May;35(5):401-9. doi: 10.1007/s00249-006-0047-9. Epub 2006 Feb 14.
The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.
防御肽的主要作用靶点是质膜,尽管可能还存在其他次要作用方式,但诱导产生的不可逆去极化足以发挥抗菌活性。膜通透性改变所涉及的通道或孔通常相当大,其单通道电导率比例如参与兴奋性调节的生理通道高两个数量级。因此,离子特异性和选择性相当低。例如,短杆菌肽有利于阳离子运输,而聚阳离子或碱性肽倾向于形成阴离子特异性孔。从南美双色叶泡蛙皮肤中分离出的一种由33个残基组成且大多为α螺旋的肽——皮肤防御素B2,我们发现其在双层膜中诱导形成的孔的离子特异性受带电荷的磷脂头部基团调节。这表明形成的是脂质 - 肽混合孔衬,而非更为经典的桶板模型。宏观电导率几乎与电压无关,浓度依赖性表明孔主要由皮肤防御素四聚体形成。在200和500皮安(在150 mM NaCl中)时,两种最可能的单通道事件能很好地分辨出来,偶尔还会出现其他等间距的更高或更低水平。与之前的分子动力学预测相反,本研究表明皮肤防御素能够形成孔,尽管一种相关类似物(B6)未能诱导出任何显著的电导率。最后,我们提出的孔模型解释了插入孔衬肽螺旋之间的磷脂头部基团以及最可能的单通道电导率之一。