Suppr超能文献

低渗肿胀对大鼠海马神经元中牛磺酸转运的调节

Regulation of taurine transport in rat hippocampal neurons by hypo-osmotic swelling.

作者信息

Olson James E, Martinho Eduardo

机构信息

Department of Emergency Medicine, Wright State University School of Medicine, Cox Institute, Kettering, Ohio 45429, USA.

出版信息

J Neurochem. 2006 Mar;96(5):1375-89. doi: 10.1111/j.1471-4159.2006.03652.x.

Abstract

Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypo-osmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned that changes in taurine transporter activity also might accompany cell swelling to minimize re-accumulation of taurine from the extracellular space. Thus, we determined the kinetic and pharmacological characteristics of neuronal taurine transport and the response to osmotic swelling. Accumulation of radioactive taurine is strongly temperature dependent and occurs via saturable and non-saturable pathways. At concentrations of taurine expected in extracellular fluid in vivo, 98% of taurine accumulation would occur via the saturable pathway. This pathway obeys Michaelis-Menten kinetics with a Km of 30.0 +/- 8.8 microm (mean +/- SE) and Jmax of 2.1 +/- 0.2 nmol/mg protein min. The saturable pathway is dependent on extracellular sodium with an effective binding constant of 80.0 +/- 3.1 mm and a Hill coefficient of 2.1 +/- 0.1. This pathway is inhibited by structural analogues of taurine and by the anion channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and 5-nitro-2-(3 phenylpropylamino) benzoic acid (NPPB). NPPB, but not DIDS, also reduces the ATP content of the cell cultures. Osmotic swelling at constant extracellular sodium concentration reduces the Jmax of the saturable transport pathway by approximately 48%, increases Kdiff for the non-saturable pathway by 77%, but has no effect on cellular ATP content. These changes in taurine transport occurring in swollen neurons in vivo would contribute to net reduction of taurine content and resulting volume regulation.

摘要

牛磺酸是中枢神经系统中细胞容积调节的重要介质,它通过一种高度特异性的钠依赖性膜转运体累积到神经元和神经胶质细胞中。在高渗性细胞皱缩过程中,随着转运体蛋白基因表达升高,牛磺酸转运体活性增强,细胞内牛磺酸净含量增加。在低渗条件下,牛磺酸通过牛磺酸传导性膜通道迅速从细胞中丢失。我们推测,牛磺酸转运体活性的变化也可能伴随细胞肿胀,以尽量减少牛磺酸从细胞外空间的重新累积。因此,我们确定了神经元牛磺酸转运的动力学和药理学特征以及对渗透性肿胀的反应。放射性牛磺酸的累积强烈依赖温度,且通过可饱和和不可饱和途径发生。在体内细胞外液预期的牛磺酸浓度下,98%的牛磺酸累积将通过可饱和途径发生。该途径遵循米氏动力学,Km为30.0±8.8微摩尔(平均值±标准误),Jmax为2.1±0.2纳摩尔/毫克蛋白·分钟。可饱和途径依赖细胞外钠,有效结合常数为80.0±3.1毫摩尔,希尔系数为2.1±0.1。该途径受到牛磺酸结构类似物以及阴离子通道抑制剂4,4'-二异硫氰酸芪-2,2'-二磺酸(DIDS)和5-硝基-2-(3-苯丙基氨基)苯甲酸(NPPB)的抑制。NPPB而非DIDS也会降低细胞培养物中的ATP含量。在细胞外钠浓度恒定的情况下进行渗透性肿胀,可使可饱和转运途径的Jmax降低约48%,使不可饱和途径的Kdiff增加77%,但对细胞ATP含量无影响。体内肿胀神经元中发生的这些牛磺酸转运变化将有助于牛磺酸含量的净减少以及由此产生的容积调节。

相似文献

1
Regulation of taurine transport in rat hippocampal neurons by hypo-osmotic swelling.
J Neurochem. 2006 Mar;96(5):1375-89. doi: 10.1111/j.1471-4159.2006.03652.x.
2
Taurine enhances volume regulation in hippocampal slices swollen osmotically.
Neuroscience. 2003;120(3):635-42. doi: 10.1016/s0306-4522(03)00359-2.
3
Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct.
J Membr Biol. 2002 Jan 15;185(2):157-64. doi: 10.1007/s00232-001-0121-2. Epub 2002 Feb 5.
4
Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.
Biochem J. 1997 Feb 1;321 ( Pt 3)(Pt 3):683-90. doi: 10.1042/bj3210683.
5
Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells.
Am J Physiol. 1997 Jul;273(1 Pt 1):C214-22. doi: 10.1152/ajpcell.1997.273.1.C214.
6
Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells.
Adv Exp Med Biol. 2000;483:213-8. doi: 10.1007/0-306-46838-7_23.

引用本文的文献

2
Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge.
Anal Chem. 2016 Nov 15;88(22):10916-10924. doi: 10.1021/acs.analchem.6b02298. Epub 2016 Nov 2.
3
Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia.
PLoS One. 2012;7(12):e53266. doi: 10.1371/journal.pone.0053266. Epub 2012 Dec 28.
4
Review: taurine: a "very essential" amino acid.
Mol Vis. 2012;18:2673-86. Epub 2012 Nov 12.
5
Receptor regulation of osmolyte homeostasis in neural cells.
J Physiol. 2010 Sep 15;588(Pt 18):3355-64. doi: 10.1113/jphysiol.2010.190777. Epub 2010 May 24.
6
Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.
J Pharmacol Exp Ther. 2010 Apr;333(1):297-309. doi: 10.1124/jpet.109.164277. Epub 2010 Jan 15.
7
Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells.
J Neurochem. 2009 Jan;108(2):437-49. doi: 10.1111/j.1471-4159.2008.05773.x. Epub 2008 Oct 8.
8
Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons.
Am J Physiol Cell Physiol. 2008 Dec;295(6):C1550-60. doi: 10.1152/ajpcell.90605.2007. Epub 2008 Oct 15.
10
Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors.
J Neurochem. 2008 Sep;106(5):1998-2014. doi: 10.1111/j.1471-4159.2008.05510.x. Epub 2008 Jun 2.

本文引用的文献

1
Taurine transporter regulation in hippocampal neurons.
Adv Exp Med Biol. 2006;583:307-14. doi: 10.1007/978-0-387-33504-9_34.
2
High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts.
Cell Biol Int. 2005 May;29(5):347-51. doi: 10.1016/j.cellbi.2005.02.003.
4
Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts.
Eur J Biochem. 2004 Dec;271(23-24):4646-58. doi: 10.1111/j.1432-1033.2004.04420.x.
5
Extracellular ATP activates chloride and taurine conductances in cultured hippocampal neurons.
Neurochem Res. 2004 Jan;29(1):239-46. doi: 10.1023/b:nere.0000010452.26022.a7.
6
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
7
Distribution of free amino acids and related substances in organs of the rat.
Biochim Biophys Acta. 1950 Jun;5(3/4):457-62. doi: 10.1016/0006-3002(50)90191-0.
8
Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels.
Am J Physiol Cell Physiol. 2004 Jun;286(6):C1399-409. doi: 10.1152/ajpcell.00198.2003. Epub 2004 Jan 21.
10
Structure and pharmacology of swelling-sensitive chloride channels, I(Cl,swell).
Fundam Clin Pharmacol. 2003 Oct;17(5):539-53. doi: 10.1046/j.1472-8206.2003.00197.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验