Suppr超能文献

掺杂二氧化铈中离子电导率的优化

Optimization of ionic conductivity in doped ceria.

作者信息

Andersson David A, Simak Sergei I, Skorodumova Natalia V, Abrikosov Igor A, Johansson Börje

机构信息

Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3518-21. doi: 10.1073/pnas.0509537103. Epub 2006 Feb 14.

Abstract

Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy-dopant interactions, represented by association (binding) energies of vacancy-dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.

摘要

具有立方萤石结构的氧化物,例如二氧化铈(CeO₂),当用比主体阳离子价态低的阳离子进行掺杂时,已知是良好的固体电解质。掺杂二氧化铈的高离子电导率使其成为固体氧化物燃料电池有吸引力的电解质,其作为环境友好型电源的前景非常广阔。在这些电解质中,电流由氧离子携带,氧离子通过氧空位传输,氧空位的存在是为了补偿掺杂阳离子较低的电荷。二氧化铈中的离子电导率与氧空位的形成和迁移特性密切相关。目前仍缺乏关于掺杂剂选择与二氧化铈中离子电导率提高之间联系的清晰物理图像。在此,我们对不同三价杂质对这些性质的影响进行了量子力学第一性原理研究。我们的结果揭示了原子水平上空位性质与宏观离子电导率之间的显著对应关系。关键参数包括体扩散的迁移势垒和空位 - 掺杂剂相互作用,由空位 - 掺杂剂团簇的缔合(结合)能表示。这些相互作用可分为排斥性弹性部分和吸引性电子部分。在最佳电解质中,这些部分应达到平衡。这一发现为缩小寻找优质掺杂剂和掺杂剂组合的范围提供了一种简单明了的方法。理想的掺杂剂有效原子序数应在61(钷)和62(钐)之间,并且我们详细阐述了与单独的每种元素相比,钕/钐和镨/钆的组合显示出增强的离子电导率。

相似文献

1
Optimization of ionic conductivity in doped ceria.掺杂二氧化铈中离子电导率的优化
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3518-21. doi: 10.1073/pnas.0509537103. Epub 2006 Feb 14.
8
A density functional study of defect migration in gadolinium doped ceria.掺杂氧化铈中缺陷迁移的密度泛函研究。
Phys Chem Chem Phys. 2010 Jul 28;12(28):7904-10. doi: 10.1039/b924534k. Epub 2010 May 26.
9
The oxygen ion conductivity of Lu doped ceria.镥掺杂二氧化铈的氧离子电导率。
J Phys Condens Matter. 2020 Jun 17;32(26):265402. doi: 10.1088/1361-648X/ab7d64.

引用本文的文献

1
Atomic dynamics of gas-dependent oxide reducibility.气体依赖性氧化物还原的原子动力学。
Nature. 2025 Aug;644(8078):927-932. doi: 10.1038/s41586-025-09394-0. Epub 2025 Aug 20.
6
Toward a Consistent Prediction of Defect Chemistry in CeO.迈向对CeO中缺陷化学的一致预测。
Chem Mater. 2022 Dec 21;35(1):207-227. doi: 10.1021/acs.chemmater.2c03019. eCollection 2023 Jan 10.
7
Progress and prospects of reversible solid oxide fuel cell materials.可逆固体氧化物燃料电池材料的进展与展望
iScience. 2021 Nov 18;24(12):103464. doi: 10.1016/j.isci.2021.103464. eCollection 2021 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验