Piraino P, Ricciardi A, Salzano G, Zotta T, Parente E
Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy.
J Microbiol Methods. 2006 Aug;66(2):336-46. doi: 10.1016/j.mimet.2005.12.007. Epub 2006 Feb 15.
Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.
将传统多元统计技术(层次聚类分析、线性判别分析)以及无监督(Kohonen自组织映射)和有监督(贝叶斯网络)人工神经网络作为工具,用于对属于乳杆菌属、明串珠菌属、肠球菌属、乳球菌属和链球菌属22个物种的乳酸菌全细胞蛋白的352种SDS-PAGE图谱进行分类和鉴定,其中包括47株参考菌株。电泳数据使用Piraino等人描述的逻辑加权函数进行预处理[Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. 全细胞蛋白电泳指纹图谱数据缩减的新程序。生物技术快报。24, 1477 - 1482]。层次聚类分析对图谱进行了令人满意的分类,但无法区分某些物种(明串珠菌属、清酒乳杆菌/弯曲乳杆菌、嗜酸乳杆菌/瑞士乳杆菌、植物乳杆菌/副植物乳杆菌、乳酸乳球菌/棉子糖乳球菌)。用参考菌株的图谱训练的7×7 Kohonen自组织映射(KSOM)对图谱进行了令人满意的分类,并且能够比层次聚类分析区分更多物种。该映射以预测模式用于鉴定未知菌株,其结果在85.5%的情况下与层次聚类分析得到的分类相匹配。两种有监督工具,线性判别分析和23:5:2贝叶斯网络,被证明在区分乳酸乳球菌与其他物种的SDS-PAGE图谱方面非常有效。我们得出结论,通过逻辑加权进行数据缩减并结合传统多元统计分析或人工神经网络,为基于全细胞蛋白SDS-PAGE图谱对乳酸菌进行分类和鉴定提供了一种有效工具。