Sakurai Akira, Darghouth Naïm R, Butera Robert J, Katz Paul S
Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.
J Neurosci. 2006 Feb 15;26(7):2010-21. doi: 10.1523/JNEUROSCI.2599-05.2006.
The mechanism underlying spike timing-dependent neuromodulation (STDN) was investigated in the opisthobranch mollusc Tritonia diomedea. The serotonergic dorsal swim interneurons (DSIs) dynamically modulated the synaptic output of ventral swim interneuron B (VSI); immediately after DSI stimulation, there was a potentiation of VSI synaptic strength followed by a longer-lasting synaptic depression. The potentiation phase of STDN was unaffected by spike broadening produced by the potassium channel blocker 4-aminopyridine (4-AP). In contrast, the depression phase was eliminated by 4-AP. Bath-applied serotonin (5-HT) decreased VSI spike duration and increased the magnitude of the A-current (IA), a voltage-dependent, transient, outward current. 4-AP preferentially blocked IA and prevented the spike narrowing caused by 5-HT, uncovering the full extent of 5-HT-induced synaptic potentiation. A consistent correlation was observed between IA and spike duration, but the correlation between synaptic strength and spike duration differed between preparations. Conductance-based simulations showed that the magnitude of A-current conductance could affect spike duration and gave an estimation of the change needed to produce spike narrowing. An artificial IA introduced into the VSI in the presence of 4-AP by means of the dynamic-clamp technique restored spike duration and gave a further approximation of the magnitude of modulation needed for spike narrowing. Together, these results suggest a mechanism for STDN: the DSIs release 5-HT, which causes a spike duration-independent enhancement of synaptic strength and a longer-lasting enhancement of IA that narrows the VSI spike and hence decreases VSI synaptic strength. Thus, STDN arises from the dynamics of independent intracellular signaling events.
在裸鳃亚目软体动物多氏三歧海牛中研究了峰电位时间依赖性神经调制(STDN)的潜在机制。血清素能背侧游泳中间神经元(DSIs)动态调节腹侧游泳中间神经元B(VSI)的突触输出;在DSI刺激后立即出现VSI突触强度增强,随后是持续时间更长的突触抑制。STDN的增强阶段不受钾通道阻滞剂4-氨基吡啶(4-AP)引起的峰电位展宽的影响。相反,4-AP消除了抑制阶段。浴加血清素(5-HT)缩短了VSI峰电位持续时间并增加了A电流(IA)的幅度,A电流是一种电压依赖性、瞬时外向电流。4-AP优先阻断IA并阻止由5-HT引起的峰电位变窄,从而揭示了5-HT诱导的突触增强的全部程度。观察到IA与峰电位持续时间之间存在一致的相关性,但不同标本中突触强度与峰电位持续时间之间的相关性有所不同。基于电导的模拟表明,A电流电导的大小可以影响峰电位持续时间,并给出了产生峰电位变窄所需变化的估计值。通过动态钳技术在存在4-AP的情况下将人工IA引入VSI中,恢复了峰电位持续时间,并进一步近似了峰电位变窄所需的调制幅度。总之,这些结果提示了一种STDN机制:DSIs释放5-HT,这会导致突触强度在不依赖峰电位持续时间的情况下增强,以及IA的持续时间更长的增强,从而使VSI峰电位变窄,进而降低VSI突触强度。因此,STDN源于独立的细胞内信号事件的动态变化。