Suppr超能文献

多巴胺对两种阈下电流的调节会使一个已识别运动神经元的活动产生相位偏移。

Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron.

作者信息

Harris-Warrick R M, Coniglio L M, Levini R M, Gueron S, Guckenheimer J

机构信息

Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.

出版信息

J Neurophysiol. 1995 Oct;74(4):1404-20. doi: 10.1152/jn.1995.74.4.1404.

Abstract
  1. The lateral pyloric (LP) neuron is a component of the 14-neuron pyloric central pattern generator in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. In the pyloric rhythm, this neuron fires rhythmic bursts of action potentials whose phasing depends on the pattern of synaptic inhibition from other network neurons and on the intrinsic postinhibitory rebound properties of the LP cell itself. Bath-applied dopamine excites the LP cell and causes its activity to be phase advanced in the pyloric motor pattern. At least part of this modulatory effect is due to dopaminergic modulation of the intrinsic rate of postinhibitory rebound in the LP cell. 2. The LP neuron was isolated from all detectable synaptic input. We measured the rate of recovery after 1-s hyperpolarizing current injections of varying amplitudes, quantifying the latency to the first spike following the hyperpolarizing prepulse and the interval between the first and second action potentials. Dopamine reduced both the first spike latency and the first interspike interval (ISI) in the isolated LP neuron. During the hyperpolarizating pre-steps, the LP cell showed a slow depolarizing sag voltage that was enhanced by dopamine. 3. We used voltage clamp to analyze dopamine modulation of subthreshold ionic currents whose activity is affected by hyperpolarizing prepulses. Dopamine modulated the transient potassium current IA by reducing its maximal conductance and shifting its voltage dependence for activation and inactivation to more depolarized voltages. This outward current is normally transiently activated after hyperpolarization of the LP cell, and delays the rate of postinhibitory rebound; by reducing IA, dopamine thus accelerates the rate of rebound of the LP neuron. 4. Dopamine also modulated the hyperpolarization-activated inward current Ih by shifting its voltage dependence for activation 20 mV in the depolarizing direction and accelerating its rate of activation. This enhanced inward current helps accelerate the rate of rebound in the LP cell after inhibition. 5. The relative roles of Ih and IA in determining the first spike latency and first ISI were explored using pharmacological blockers of Ih (Cs+) and IA [4-aminopyridine (4-AP)]. Blockade of Ih prolonged the first spike latency and first ISI, but only slightly reduced the net effect of dopamine. In the continued presence of Cs+, blockade of IA with 4-AP greatly shortened the first spike latency and first ISI. Under conditions where both Ih and IA were blocked, dopamine had no additional effect on the LP cell. 6. We used the dynamic clamp technique to further study the relative roles of IA and Ih modulation in dopamine's phase advance of the LP cell. We blocked the endogenous Ih with Cs+ and replaced it with a simulated current generated by a computer model of Ih. The neuron with simulated Ih gave curves relating the hyperpolarizing prepulse amplitude to first spike latency that were the same as in the untreated cell. Changing the computer parameters of the simulated Ih to those induced by dopamine without changing IA caused only a slight reduction in first spike latency, which was approximately 20% of the total reduction caused by dopamine in an untreated cell. Bath application of dopamine in the presence of Cs+ and simulated Ih (with control parameters) allowed us to determine the effect of altering IA but not Ih: this caused a significant reduction in first spike latency, but it was still only approximately 70% of the effect of dopamine in the untreated cell. Finally, in the continued presence of dopamine, changing the parameters of the simulated Ih to those observed with dopamine reduced the first spike latency to that seen with dopamine in the untreated cell. 7. We generated a mathematical model of the lobster LP neuron, based on the model of Buchholtz et al. for the crab LP neuron.
摘要
  1. 外侧幽门(LP)神经元是多刺龙虾(Panulirus interruptus)口胃神经节中14神经元幽门中央模式发生器的一个组成部分。在幽门节律中,该神经元发放有节律的动作电位爆发,其相位取决于来自其他网络神经元的突触抑制模式以及LP细胞自身的内在抑制后反弹特性。浴加多巴胺可兴奋LP细胞,并使其活动在幽门运动模式中相位提前。这种调节作用至少部分归因于多巴胺能对LP细胞内在抑制后反弹速率的调节。2. 将LP神经元与所有可检测到的突触输入隔离开。我们测量了不同幅度的1秒超极化电流注入后的恢复速率,量化了超极化预脉冲后第一个动作电位的潜伏期以及第一个和第二个动作电位之间的间隔。多巴胺缩短了分离的LP神经元中的第一个动作电位潜伏期和第一个峰间间隔(ISI)。在超极化预步骤期间,LP细胞表现出缓慢的去极化下垂电压,多巴胺可增强此电压。3. 我们使用电压钳来分析多巴胺对阈下离子电流的调节作用,这些离子电流的活动受超极化预脉冲影响。多巴胺通过降低其最大电导并将其激活和失活的电压依赖性向更去极化的电压移动来调节瞬时钾电流IA。这种外向电流通常在LP细胞超极化后瞬时激活,并延迟抑制后反弹的速率;通过降低IA,多巴胺从而加速LP神经元的反弹速率。4. 多巴胺还通过将其激活的电压依赖性在去极化方向上移动20 mV并加速其激活速率来调节超极化激活的内向电流Ih。这种增强的内向电流有助于加速LP细胞在抑制后的反弹速率。5. 使用Ih(Cs +)和IA [4 - 氨基吡啶(4 - AP)]的药理学阻断剂来探究Ih和IA在确定第一个动作电位潜伏期和第一个ISI中的相对作用。阻断Ih延长了第一个动作电位潜伏期和第一个ISI,但仅略微降低了多巴胺的净效应。在持续存在Cs +的情况下,用4 - AP阻断IA大大缩短了第一个动作电位潜伏期和第一个ISI。在Ih和IA均被阻断的条件下,多巴胺对LP细胞没有额外影响。6. 我们使用动态钳技术进一步研究IA和Ih调节在多巴胺使LP细胞相位提前中的相对作用。我们用Cs +阻断内源性Ih并用由Ih的计算机模型生成的模拟电流替代它。具有模拟Ih的神经元给出的将超极化预脉冲幅度与第一个动作电位潜伏期相关的曲线与未处理细胞中的相同。在不改变IA的情况下将模拟Ih的计算机参数改变为多巴胺诱导的参数仅导致第一个动作电位潜伏期略有降低,这约为未处理细胞中多巴胺引起的总降低的20%。在存在Cs +和模拟Ih(具有对照参数)的情况下浴加多巴胺使我们能够确定改变IA但不改变Ih的效果:这导致第一个动作电位潜伏期显著降低,但仍仅约为未处理细胞中多巴胺效果的70%。最后,在持续存在多巴胺的情况下,将模拟Ih的参数改变为多巴胺观察到的参数将第一个动作电位潜伏期降低到未处理细胞中多巴胺作用下的水平。7. 基于Buchholtz等人对蟹LP神经元的模型,我们构建了龙虾LP神经元的数学模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验