Balmer Yves, Vensel William H, Cai Nick, Manieri Wanda, Schürmann Peter, Hurkman William J, Buchanan Bob B
Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2988-93. doi: 10.1073/pnas.0511040103. Epub 2006 Feb 15.
A growing number of processes throughout biology are regulated by redox via thiol-disulfide exchange. This mechanism is particularly widespread in plants, where almost 200 proteins have been linked to thioredoxin (Trx), a widely distributed small regulatory disulfide protein. The current study extends regulation by Trx to amyloplasts, organelles prevalent in heterotrophic plant tissues that, among other biosynthetic activities, catalyze the synthesis and storage of copious amounts of starch. Using proteomics and immunological methods, we identified the components of the ferredoxin/Trx system (ferredoxin, ferredoxin-Trx reductase, and Trx), originally described for chloroplasts, in amyloplasts isolated from wheat starchy endosperm. Ferredoxin is reduced not by light, as in chloroplasts, but by metabolically generated NADPH via ferredoxin-NADP reductase. However, once reduced, ferredoxin appears to act as established for chloroplasts, i.e., via ferredoxin-Trx reductase and a Trx (m-type). A proteomics approach in combination with affinity chromatography and a fluorescent thiol probe led to the identification of 42 potential Trx target proteins, 13 not previously recognized, including a major membrane transporter (Brittle-1 or ADP-glucose transporter). The proteins function in a range of processes in addition to starch metabolism: biosynthesis of lipids, amino acids, and nucleotides; protein folding; and several miscellaneous reactions. The results suggest a mechanism whereby light is initially recognized as a thiol signal in chloroplasts, then as a sugar during transit to the sink, where it is converted again to a thiol signal. In this way, amyloplast reactions in the grain can be coordinated with photosynthesis taking place in leaves.
在整个生物学领域,越来越多的过程是通过硫醇-二硫键交换进行氧化还原调节的。这种机制在植物中尤为普遍,在植物中,近200种蛋白质与硫氧还蛋白(Trx)有关,硫氧还蛋白是一种广泛分布的小型调节性二硫键蛋白。当前的研究将硫氧还蛋白的调节作用扩展到了造粉体,造粉体是异养植物组织中普遍存在的细胞器,除了其他生物合成活动外,还催化大量淀粉的合成与储存。我们使用蛋白质组学和免疫学方法,在从小麦淀粉胚乳中分离出的造粉体中鉴定出了铁氧化还原蛋白/硫氧还蛋白系统的成分(铁氧化还原蛋白、铁氧化还原蛋白-硫氧还蛋白还原酶和硫氧还蛋白),该系统最初是在叶绿体中发现的。与叶绿体不同,铁氧化还原蛋白不是通过光来还原的,而是通过铁氧化还原蛋白-NADP还原酶由代谢产生的NADPH来还原。然而,一旦被还原,铁氧化还原蛋白的作用似乎就如同在叶绿体中一样,即通过铁氧化还原蛋白-硫氧还蛋白还原酶和一种硫氧还蛋白(m型)来发挥作用。蛋白质组学方法结合亲和色谱法和荧光硫醇探针,鉴定出了42种潜在的硫氧还蛋白靶蛋白,其中13种是以前未被识别的,包括一种主要的膜转运蛋白(脆性1或ADP-葡萄糖转运蛋白)。这些蛋白质除了在淀粉代谢中发挥作用外,还参与一系列其他过程:脂质、氨基酸和核苷酸的生物合成;蛋白质折叠;以及一些杂项反应。研究结果表明了一种机制,即光最初在叶绿体中被识别为硫醇信号,然后在向库运输的过程中被识别为糖,在库中它又再次转化为硫醇信号。通过这种方式,谷物中的造粉体反应可以与叶片中进行的光合作用相协调。