Suppr超能文献

两个不同的氧化还原级联协同调节叶绿体功能并维持植物活力。

Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

作者信息

Yoshida Keisuke, Hisabori Toru

机构信息

Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan

出版信息

Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3967-76. doi: 10.1073/pnas.1604101113. Epub 2016 Jun 22.

Abstract

The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.

摘要

基于硫醇的氧化还原调节系统被认为可根据光照环境的变化来调节叶绿体功能。传统上认为,经由铁氧还蛋白-硫氧还蛋白还原酶(FTR)/硫氧还蛋白(Trx)途径的氧化还原级联反应可作为光信号向靶酶的传递者。然而,新出现的数据表明,叶绿体具有一个由多种氧化还原介质蛋白和靶酶组成的复杂氧化还原网络。尽管针对该系统进行了广泛研究,但仍有两个基本问题尚未解决:叶绿体中的氧化还原途径是如何协调的,以及叶绿体为何具有复杂的氧化还原网络?在本报告中,我们表明NADPH-硫氧还蛋白还原酶C(NTRC)是一种关键的氧化还原介质蛋白,其负责的调节功能不同于经典的FTR/Trx系统。靶点筛选及后续生化分析表明,NTRC和硫氧还蛋白家族对其靶蛋白的识别存在差异。此外,我们发现NTRC是硫氧还蛋白z的电子供体,而硫氧还蛋白z是叶绿体基因表达的关键调节因子。我们进一步证明,通过FTR/Trx和NTRC途径对叶绿体功能进行协同控制对植物的生存能力至关重要。FTR和NTRC表达受损的拟南芥双突变体在自养生长条件下表现出致死表型。这种严重的生长表型与光合性能的急剧丧失有关。这些综合结果提供了叶绿体氧化还原网络及其生物学功能的扩展图谱。

相似文献

引用本文的文献

7
NTRC regulates CP12 to activate Calvin-Benson cycle during cold acclimation.NTRC 通过调控 CP12 激活 Calvin-Benson 循环以适应低温。
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2306338120. doi: 10.1073/pnas.2306338120. Epub 2023 Aug 7.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验